
Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Poetry of Programming
—

How (not) to teach Clojure to beginners

Attila Egri-Nagy
www.egri-nagy.hu

Akita International University, JAPAN

2017

www.egri-nagy.hu


Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Topic

designing and deploying a full semester Clojure course

1. how (not) to teach Clojure to beginners
2. the cognitive difficulties of problem solving in general
3. trying to understand why I like the language



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Overview

Introduction

Background story

Course design

Running the course

How to code it?

Future



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Introduction



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Who am I?

Software engineer disguised as a mathematician,
I working in applied computational abstract algebra,
I teaching traditional math classes.

Commodore 64 BASIC/assembly
→ Pascal, C (university)
→ JAVA (as a software engineer)
→ GAP www.gap-system.org (as an academic researcher)
→ Clojure (for recomputing results)

www.gap-system.org


Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Akita International University, Japan

I a liberal arts college
I teaching in English

I offering programming courses: C# and Clojure



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Background story



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Rationale for programming courses

The current hype of teaching everyone coding –
controversial issue.

What we can agree about:
Every university student (regardless of major) should
have at least one programming course.

In particular at AIU: we are working on a new major ‘Digital
Studies’ — Liberal Arts education getting a digital update.



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

How did it really happen?
New job, expectation for deploying new courses.

⇓

MAT 240 Mathematics for the Digital World

⇓

Realizing how much work a new course involves, and the
expectation for more courses.

⇓

New tactic: a crazy course that is likely to be rejected
(either more research time, or a course that is research).

⇓

MAT245 Poetry of Programming – Puzzle-based
introduction to Functional Programming



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Poetry?
A summer river being crossed
how pleasing
with sandals in my hands!

Yosa Buson (1716 – 1784)

Snowclad houses in the night (1778)

(fn f [a b]
(if (zero? b)

a
(recur b (mod a b))))

Yes! In a limited sense…



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

But would the students come?

16 registered, 14 finished the course, gender ratio 3:11



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Course design



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Excellent beginner books on Clojure

But, their target audience is different.



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Teaching total beginners

I shared background knowledge
I focused material, minimized amount
I one concept at a time



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Liberal Arts students

shared background knowledge
I high school algebra, real-valued functions
I learning a foreign language

reduced learning material
I no tooling, no IDE, just a REPL
I no Java interop
I the functional core of Clojure



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Dependency graph of Clojure
functions/programming concepts

We introduce a new concept, when all of its ‘parts’ are
already known.

function definition depends on
I lists
I function calls
I def

I vectors

The alternative is to ask for postponed comprehension
(e.g. HelloWorld.java).

Which path maximizes learning speed/fun?



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Running the course



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Starting point: function composition

Definition (copied from a College Algebra textbook)
The composite function f ◦ g of two functions f and g is
defined by

(f ◦ g)(x) := f (g(x))

“If you’ve had to learn this stuff anyway, why not using it
beyond the math course?”

“All you need to do is this...”

f (x) −→(f x)

f (g(x)) −→(f (g x))



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Simple functions
f (x) = x identity
f (x) = x + 1 inc
f (x) = x − 1 dec

The game is on: what can you do with a limited set of
functions?

What’s the value? – a simple question:

((comp inc dec) 1)

and a little puzzle:

(((comp comp comp) dec dec) 1)

This forced me to revisit these functions.

When do we stop learning?



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Assessment – mass produced koans
Lab work makes up 40% of final grade.

Mid term and a final exam, 30% each.

Paper based exam?

Reading exercise: evaluate a single Clojure expression.



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Function definitions are not urgent

Vectors, hash-maps and hash-sets are functions.

Just a silly exercise:

((comp {:b 11 :a 13 :c 17} [:c :b :a] [1 3 2]) 2)

and a more sensible one:

(zipmap (range 4)
["zero" "one" "two" "three"])

{0 "zero", 1 "one", 2 "two", 3 "three"}



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Immutability – not an issue

New programmers do not need to unlearn old habits.

(def v [1 2 3])

(conj v 4)
[1 2 3 4]
v
[1 2 3]

Not surprised? then no worries!



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Metaphors for def
I Creating long term memories.
I Attaching meaning to words.

Both hint towards not using them as mutable variables.

Metaphors as knowledge transferring cognitive tools:
Metaphors We Compute By, Alvaro Videla @ClojuTRE 2017



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Defining functions - abstracting over calculations
playing in the REPL: several examples of the same
calculation

(* 2 2)
4
(* 12 12)
144

finding what changes, identifying the ‘moving part’
(algebraic abstraction)

((fn [x] (* x x)) 2)
4
((fn [x] (* x x)) 12)
144
(map (fn [x] (* x x)) [1 2 3 4 5])
(1 4 9 16 25)



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

then giving it a name

(defn square
[x]
(* x x))

and using it anywhere

(square 2)
4
(square 12)
144
(map square [1 2 3 4 5])
(1 4 9 16 25)

This seemed easy…



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Roadblock

Leaving the comfort zone (arithmetic functions): functions
working with strings and numbers.

(defn rect-info
[a b]
(str "A rectangle with sides " a ", " b

" has area " (* a b) "."))

Same in mathematics: the problem is that we are not
working with familiar objects.

⇓

More efforts on bridging the abstract realm and the everyday
experience.



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

(filter orange? fruits)

Separate the oranges from other fruits.

(filter even? [1 2 3 4 5 6])
(2 4 6)



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

what makes filter great

false

nil
true

1

0

()

[]
42

{}

{:a 2}

:k

[1 2 3]
#{}

"hello"

inc

-3

'(\a \b)

\space

FALSEY

TRUTHY

3.14

#{3 4}

'x

nil?



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

(map peel oranges)

Peel all the oranges.

(map square [1 2 3 4])
(1 4 9 16)

need to deal with a single element only, collection processing
is automated



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Let’s play!

https://david-peter.de/cube-composer/

https://david-peter.de/cube-composer/


Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

(reduce cut empty-bowl fruits)

Cut all the fruits into a bowl.

(reduce conj [] (range 3))
[0 1 2]



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Teaching reduce

Metaphors: on the beach a child collecting pebbles in a
bucket, or just looking for the most beautiful pebble.

However the big thing is reductions – it shows the process.



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Reimplementing map: recursion vs. reduce

(defn MAP
"recursive implementation of map"
[f coll]
(if (empty? coll)
()
(cons (f (first coll))

(MAP f (rest coll)))))

(defn MAP2
"implementing map by reduce"
[f coll]
(reduce (fn [x y]

(conj x (f y)))
[]
coll))

Which one is nicer? better? (in what sense?) easier?



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

blinded by recursion

next time: reduce first



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Schedule - 15 weeks, 2 classes/week, 37.5 hours
1. identity, inc, arithmetic operators, comp, predicates
2. quote, list, cons, first, rest, last, vectors, cons

vs. conj, def
3. defn, str, map, apply, if
4. range, filter
5. laziness, range, iterate, take, take-while, Collatz

conjecture
6. recursion, fn, reimplement count, map
7. reimplement filter, introducing let, clojure.string
8. hash-maps, hash-sets
9. using hash-maps, truthy and falsey

10. concat, mapcat.
11. tuples and permutations, arithmetic puzzle (brute-force)
12. max-key, sequential destructuring, reducing/folding
13. reduce, arithmetic puzzle again, point-free style
14. rand, println, for, doseq, Quil
15. Caesar-shift cipher



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Class format

1
3 livecoding (instead of
lecturing): Raspberry
Pi, Emacs + Cider

2
3 problem solving,
“patrolling”

The best thing that can
happen: students
helping each other.



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

An example problem: Collatz conjecture
Iterating the function

collatz(x) =
{

3x + 1 if x is odd
x
2 if x is even

gives sequences that seem to always end in 1.

What number between 1 and 1000 produces the longest
sequence?

(defn collatz [n]
(if (even? n)

(/ n 2)
(inc (* n 3))))

(defn c-length [n]
(count (take-while #(not= 1 %)

(iterate collatz n))))



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Code Transformations

answering the longest run question:

(apply max (map c-length (range 1 1001)))
178
(filter #(= 178 (c-length %)) (range 1 1001))
(871)

transformed by introducing max-key

(apply max-key c-length (range 1 1001))



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Difficulty: apply

(max [1 3 2]) vs. (apply max [1 3 2])

Helping metaphor: container data structures are packaging.

If apples are in a bag, you can’t eat them directly.

especially confusing

(apply + [1 2 3 4])

(reduce + [1 2 3 4]])



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Complicated solutions

Task: Write a function that multiplies a number by 10.

Student: Here is the solution.

(defn f
[x]
((fn [x] (* x 10)) x))

Me: This can be simplified. (defn f [x] (* x 10))

Student: (checks in REPL) Yes, but then I don’t
understand.

Me: (thinking hard, figuring out what to say)



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

How to code it?



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

You know this book…

…since 5 years ago you were told to buy it immediately.

Rich Hickey: Hammock Driven Development, Clojure/Conj 2012



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Math −→ Programming

Most ideas translate easily.



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Steps of problem solving

Understanding the problem No point in writing code
without knowing what we want to achieve.

Making a plan Decomposing the problem into smaller and
simpler tasks. Play in the REPL!

Carrying out the plan Write code, test code, write code,
test code…

Looking back Check, reflect and learn. Rewrite for
improvement.



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Play in the REPL!

I finding pieces of a solution
I mobilizing knowledge

The REPL may not be as natural as we would like to think.

Beginner’s workflow:

editor REPL
extracting succesful computation

Professional’s workflow:

editor REPL
testing candidate solutions



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

First REPL: clojurescript.io

need for saving solutions

clojurescript.io


Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Editor is needed: repl.it interface

editor/buffer console/REPL

Problem: students give up the dynamism of the REPL.

repl.it


Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Documentation

I inline documentation – geared towards professionals
(maybe naturally so)

I clojuredocs.org – very useful, but simple and
advanced examples are in no particular order

I the weird characters guide – awesome
I stackoverflow effect – it leads to solutions but not to

understanding

clojuredocs.org


Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Solution spaces

There are several different solutions for the same problem!

I
N
P
U
T

O
U
T
P
U
T

(defn abs [x]
(if (>= x 0) x (- x)))

(defn abs2 [x]
(max (- x) x))



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Future



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Improving the course
I reactive → proactive

I adding a ‘summit’
I Algebra: Euler’s equation eπi + 1 = 0
I Calculus: The Fundamental Theorem of Calculus

(integration is inverse derivation)
I Lisp/Clojure: metacircular evaluator

I Tooling: NightCode/Parinfer



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Summary

What is achievable in one semester?

Using map, filter and reduce in solving math puzzles,
programming exercises.

Suggestions (for everyone):
I the learning process never finishes

I maintain a beginner’s mindset, or
I expose yourself to beginner thinking (by teaching)

I metacognition: think about your coding
I think of a solution space, not just a single path in it



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Conclusion

Your love of Clojure cannot be destroyed by
deconstruction.

Poetry of Programming - course material

https://egri-nagy.github.io/popbook/

Thank You!

https://egri-nagy.github.io/popbook/


Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Conclusion

Your love of Clojure cannot be destroyed by
deconstruction.

Poetry of Programming - course material

https://egri-nagy.github.io/popbook/

Thank You!

https://egri-nagy.github.io/popbook/

	Introduction
	Background story
	Course design
	Running the course
	How to code it?
	Future

