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Topic

designing and deploying a full semester Clojure course

1. how (not) to teach Clojure to beginners
2. the cognitive difficulties of problem solving in general
3. trying to understand why I like the language
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Who am I?

Software engineer disguised as a mathematician,
I working in applied computational abstract algebra,
I teaching traditional math classes.

Commodore 64 BASIC/assembly
→ Pascal, C (university)
→ JAVA (as a software engineer)
→ GAP www.gap-system.org (as an academic researcher)
→ Clojure (for recomputing results)

www.gap-system.org
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Akita International University, Japan

I a liberal arts college
I teaching in English

I offering programming courses: C# and Clojure
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Rationale for programming courses

The current hype of teaching everyone coding –
controversial issue.

What we can agree about:
Every university student (regardless of major) should
have at least one programming course.

In particular at AIU: we are working on a new major ‘Digital
Studies’ — Liberal Arts education getting a digital update.
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How did it really happen?
New job, expectation for deploying new courses.

⇓

MAT 240 Mathematics for the Digital World

⇓

Realizing how much work a new course involves, and the
expectation for more courses.

⇓

New tactic: a crazy course that is likely to be rejected
(either more research time, or a course that is research).

⇓

MAT245 Poetry of Programming – Puzzle-based
introduction to Functional Programming
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Poetry?
A summer river being crossed
how pleasing
with sandals in my hands!

Yosa Buson (1716 – 1784)

Snowclad houses in the night (1778)

(fn f [a b]
(if (zero? b)

a
(recur b (mod a b))))

Yes! In a limited sense…
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But would the students come?

16 registered, 14 finished the course, gender ratio 3:11
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Excellent beginner books on Clojure

But, their target audience is different.
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Teaching total beginners

I shared background knowledge
I focused material, minimized amount
I one concept at a time



Poetry of
Programming

—
How (not) to

teach Clojure to
beginners

Introduction

Background story

Course design

Running the course

How to code it?

Future

Liberal Arts students

shared background knowledge
I high school algebra, real-valued functions
I learning a foreign language

reduced learning material
I no tooling, no IDE, just a REPL
I no Java interop
I the functional core of Clojure
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Dependency graph of Clojure
functions/programming concepts

We introduce a new concept, when all of its ‘parts’ are
already known.

function definition depends on
I lists
I function calls
I def

I vectors

The alternative is to ask for postponed comprehension
(e.g. HelloWorld.java).

Which path maximizes learning speed/fun?
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Starting point: function composition

Definition (copied from a College Algebra textbook)
The composite function f ◦ g of two functions f and g is
defined by

(f ◦ g)(x) := f (g(x))

“If you’ve had to learn this stuff anyway, why not using it
beyond the math course?”

“All you need to do is this...”

f (x) −→(f x)

f (g(x)) −→(f (g x))
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Simple functions
f (x) = x identity
f (x) = x + 1 inc
f (x) = x − 1 dec

The game is on: what can you do with a limited set of
functions?

What’s the value? – a simple question:

((comp inc dec) 1)

and a little puzzle:

(((comp comp comp) dec dec) 1)

This forced me to revisit these functions.

When do we stop learning?
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Assessment – mass produced koans
Lab work makes up 40% of final grade.

Mid term and a final exam, 30% each.

Paper based exam?

Reading exercise: evaluate a single Clojure expression.
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Function definitions are not urgent

Vectors, hash-maps and hash-sets are functions.

Just a silly exercise:

((comp {:b 11 :a 13 :c 17} [:c :b :a] [1 3 2]) 2)

and a more sensible one:

(zipmap (range 4)
["zero" "one" "two" "three"])

{0 "zero", 1 "one", 2 "two", 3 "three"}
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Immutability – not an issue

New programmers do not need to unlearn old habits.

(def v [1 2 3])

(conj v 4)
[1 2 3 4]
v
[1 2 3]

Not surprised? then no worries!
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Metaphors for def
I Creating long term memories.
I Attaching meaning to words.

Both hint towards not using them as mutable variables.

Metaphors as knowledge transferring cognitive tools:
Metaphors We Compute By, Alvaro Videla @ClojuTRE 2017
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Defining functions - abstracting over calculations
playing in the REPL: several examples of the same
calculation

(* 2 2)
4
(* 12 12)
144

finding what changes, identifying the ‘moving part’
(algebraic abstraction)

((fn [x] (* x x)) 2)
4
((fn [x] (* x x)) 12)
144
(map (fn [x] (* x x)) [1 2 3 4 5])
(1 4 9 16 25)
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then giving it a name

(defn square
[x]
(* x x))

and using it anywhere

(square 2)
4
(square 12)
144
(map square [1 2 3 4 5])
(1 4 9 16 25)

This seemed easy…
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Roadblock

Leaving the comfort zone (arithmetic functions): functions
working with strings and numbers.

(defn rect-info
[a b]
(str "A rectangle with sides " a ", " b

" has area " (* a b) "."))

Same in mathematics: the problem is that we are not
working with familiar objects.

⇓

More efforts on bridging the abstract realm and the everyday
experience.
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(filter orange? fruits)

Separate the oranges from other fruits.

(filter even? [1 2 3 4 5 6])
(2 4 6)
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what makes filter great

false

nil
true

1

0

()

[]
42

{}

{:a 2}

:k

[1 2 3]
#{}

"hello"

inc

-3

'(\a \b)

\space

FALSEY

TRUTHY

3.14

#{3 4}

'x

nil?
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(map peel oranges)

Peel all the oranges.

(map square [1 2 3 4])
(1 4 9 16)

need to deal with a single element only, collection processing
is automated
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Let’s play!

https://david-peter.de/cube-composer/

https://david-peter.de/cube-composer/
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(reduce cut empty-bowl fruits)

Cut all the fruits into a bowl.

(reduce conj [] (range 3))
[0 1 2]
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Teaching reduce

Metaphors: on the beach a child collecting pebbles in a
bucket, or just looking for the most beautiful pebble.

However the big thing is reductions – it shows the process.
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Reimplementing map: recursion vs. reduce

(defn MAP
"recursive implementation of map"
[f coll]
(if (empty? coll)
()
(cons (f (first coll))

(MAP f (rest coll)))))

(defn MAP2
"implementing map by reduce"
[f coll]
(reduce (fn [x y]

(conj x (f y)))
[]
coll))

Which one is nicer? better? (in what sense?) easier?
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blinded by recursion

next time: reduce first
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Schedule - 15 weeks, 2 classes/week, 37.5 hours
1. identity, inc, arithmetic operators, comp, predicates
2. quote, list, cons, first, rest, last, vectors, cons

vs. conj, def
3. defn, str, map, apply, if
4. range, filter
5. laziness, range, iterate, take, take-while, Collatz

conjecture
6. recursion, fn, reimplement count, map
7. reimplement filter, introducing let, clojure.string
8. hash-maps, hash-sets
9. using hash-maps, truthy and falsey

10. concat, mapcat.
11. tuples and permutations, arithmetic puzzle (brute-force)
12. max-key, sequential destructuring, reducing/folding
13. reduce, arithmetic puzzle again, point-free style
14. rand, println, for, doseq, Quil
15. Caesar-shift cipher
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Class format

1
3 livecoding (instead of
lecturing): Raspberry
Pi, Emacs + Cider

2
3 problem solving,
“patrolling”

The best thing that can
happen: students
helping each other.
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An example problem: Collatz conjecture
Iterating the function

collatz(x) =
{

3x + 1 if x is odd
x
2 if x is even

gives sequences that seem to always end in 1.

What number between 1 and 1000 produces the longest
sequence?

(defn collatz [n]
(if (even? n)

(/ n 2)
(inc (* n 3))))

(defn c-length [n]
(count (take-while #(not= 1 %)

(iterate collatz n))))
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Code Transformations

answering the longest run question:

(apply max (map c-length (range 1 1001)))
178
(filter #(= 178 (c-length %)) (range 1 1001))
(871)

transformed by introducing max-key

(apply max-key c-length (range 1 1001))
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Difficulty: apply

(max [1 3 2]) vs. (apply max [1 3 2])

Helping metaphor: container data structures are packaging.

If apples are in a bag, you can’t eat them directly.

especially confusing

(apply + [1 2 3 4])

(reduce + [1 2 3 4]])
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Complicated solutions

Task: Write a function that multiplies a number by 10.

Student: Here is the solution.

(defn f
[x]
((fn [x] (* x 10)) x))

Me: This can be simplified. (defn f [x] (* x 10))

Student: (checks in REPL) Yes, but then I don’t
understand.

Me: (thinking hard, figuring out what to say)
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How to code it?
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You know this book…

…since 5 years ago you were told to buy it immediately.

Rich Hickey: Hammock Driven Development, Clojure/Conj 2012
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Math −→ Programming

Most ideas translate easily.
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Steps of problem solving

Understanding the problem No point in writing code
without knowing what we want to achieve.

Making a plan Decomposing the problem into smaller and
simpler tasks. Play in the REPL!

Carrying out the plan Write code, test code, write code,
test code…

Looking back Check, reflect and learn. Rewrite for
improvement.
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Play in the REPL!

I finding pieces of a solution
I mobilizing knowledge

The REPL may not be as natural as we would like to think.

Beginner’s workflow:

editor REPL
extracting succesful computation

Professional’s workflow:

editor REPL
testing candidate solutions
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First REPL: clojurescript.io

need for saving solutions

clojurescript.io
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Editor is needed: repl.it interface

editor/buffer console/REPL

Problem: students give up the dynamism of the REPL.

repl.it
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Documentation

I inline documentation – geared towards professionals
(maybe naturally so)

I clojuredocs.org – very useful, but simple and
advanced examples are in no particular order

I the weird characters guide – awesome
I stackoverflow effect – it leads to solutions but not to

understanding

clojuredocs.org
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Solution spaces

There are several different solutions for the same problem!

I
N
P
U
T

O
U
T
P
U
T

(defn abs [x]
(if (>= x 0) x (- x)))

(defn abs2 [x]
(max (- x) x))
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Improving the course
I reactive → proactive

I adding a ‘summit’
I Algebra: Euler’s equation eπi + 1 = 0
I Calculus: The Fundamental Theorem of Calculus

(integration is inverse derivation)
I Lisp/Clojure: metacircular evaluator

I Tooling: NightCode/Parinfer
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Summary

What is achievable in one semester?

Using map, filter and reduce in solving math puzzles,
programming exercises.

Suggestions (for everyone):
I the learning process never finishes

I maintain a beginner’s mindset, or
I expose yourself to beginner thinking (by teaching)

I metacognition: think about your coding
I think of a solution space, not just a single path in it
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Conclusion

Your love of Clojure cannot be destroyed by
deconstruction.

Poetry of Programming - course material

https://egri-nagy.github.io/popbook/

Thank You!

https://egri-nagy.github.io/popbook/
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