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As science and technology advance, their fundamental ideas get
more straightforward and better explained. Therefore, more people,
including younger ones, can understand how the world and our
machines work. Similarly, computer programming has also become
more accessible. Being a software engineer is still as back-breaking as
ever, but now anyone can experience the thrills of problem-solving by
instructing computers.

Here we aim to introduce programming ideas purely and min-
imally. We focus more on conversations with a computer and less
on the tools required for software engineering. Hence the language
choice: the functional core of CLOJURE in its interactive command
line REPL (read-eval-print-loop). It is an ideal first language with
a “cheeky” character: it realizes many programming concepts with
ridiculously simple constructs. Accordingly, we select the features
that give maximal empowerment, enabling students to solve pro-
gramming challenges as soon as possible, but we do not introduce
the complete language.

“THE PROCESS of preparing programs
for a digital computer is especially
attractive, not only because it can

be economically and scientifically
rewarding, but also because it can

be an aesthetic experience much like
composing poetry or music.” — the

first sentence of the Art of Computer
Programming by Donald E. Knuth [6].
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What is programming?

How to instruct computers to do something? Computers carry out in-
structions in an extremely precise manner. Therefore we have to
specify the tasks with thorough exactness. Work done by computers
has a general form: based on the input information, we would like to
get some desired output. This observation makes our question more
specific. What is the most rigorous way of defining input-output pairs?
The mathematical language of functions is the primary form of talk-
ing to computers in a programming situation. One way or the other,
all programming languages are about using, defining, transforming,
and composing functions. We specify a function and give its input
values, then the computer figures out the value of the function. We
say that we call a function, and the computer evaluates the function
with the given arguments. It is a simplifying view, but roughly this is
how we play the game of programming.

Programming is also about writing text. This text, the code, is in-
terpreted and executed by computers. However, that is not all of it.
It is an often neglected aspect of programs that they are also there
for humans to read. Thus, written code is also a way of communica-
tion between humans. The program I wrote will tell you how I think
about solving a particular problem. The parallel between natural and
programming languages can be taken further. Natural language is
used not just for everyday communication but for expressing per-
sonality, emotions, and beauty. Similarly, programming languages
can express ideas, ingenuity, wisdom, wit, and beauty beyond the
mundane tasks of application development and maintenance. Here
we aim to develop the ability to appreciate the beauty in written
code. It is not just valuing a solution for its practical value but also
recognizing the style expressed in the process. There is a slight differ-
ence from poetry, though. Reading the text is not enough. The joy of
coding can only be experienced by doing it.

There are three levels of understanding of procedural knowledge,
i.e. knowing how to do things.

1. Seeing someone else doing it, or listening to an explanation. These can
be entertaining but seldom lead to real learning.

SUMMARY: Here we attempt to give a
definition of computer programming
with the purpose of setting style for this
book: conversations with the computer.

The input-output pair is one particular
way to look at computation. Alterna-
tively, one can view computation as an
interactive process. This approach bet-
ter describes our everyday interactions
with computers. It is also possible to
argue that the two approaches are not
different. Interaction can be understood
as very short cycles of input to output
computations.

“A computational process is indeed
much like a sorcerer’s idea of a spirit.
It cannot be seen or touched. It is not
composed of matter at all. However, it
is very real. It can perform intellectual
work. It can answer questions. It can
affect the world by disbursing money
at a bank or by controlling a robot arm
in a factory. The programs we use to
conjure processes are like a sorcerer’s
spells. They are carefully composed
from symbolic expressions in arcane
and esoteric programming languages
that prescribe the tasks we want our
processes to perform.” — this is the
auspicious beginning of legendary MIT
programming textbook, colloquially
known as SICP [1].



2. Doing it. There is no need to argue that knowing the steps does
not guarantee that we can carry out the process. Simply the de-
scriptions of the actions leave so many aspects unexplained.

3. Explaining it to someone else. Being able to do something is not the
highest form of understanding. Teachers would testify that they
could understand their subject when they started teaching it.

Replace ‘someone else’ with ‘computer” in the last item, and you will
see why writing computer programs is an efficient way of under-
standing the world around us. Writing code requires pulling things
apart and rebuilding them from primitive building blocks. Therefore
computational problem solving forces us to understand the real-
world problem in its details and its big picture.

Learning a programming language is like learning a foreign lan-
guage, but easier and faster than that. The ‘grammar’, the syntax, is
less complex, and ‘meaning’, the semantics, is aimed to be unambigu-
ous. So learning a programming language is easy while learning a
natural language is more complicated— the opposite of what peo-
ple would think based on the number of people speaking foreign
languages and the number of software engineers.

This book aims to give a lightning-fast introduction to the core
CrojURE language. By reading and rereading this text and by try-
ing out the examples, one should gain enough knowledge to tackle
programming puzzles in the style of programming contests and cod-
ing katas. The imagined reader is someone who may not become a
professional software developer but does not want to miss out on
this intellectual adventure (for instance, modern Liberal Arts stu-
dents). People with some programming experience could benefit
from the book too, but they need to maintain an open mind. Expe-
rience shows that programmers with a more traditional imperative
and object-oriented coding knowledge could find it difficult to absorb
the functional ideas. They may also find the exposition peculiar if not
revolting. The code examples are there for maximizing the speed of
worldview expansion. They may not coincide with the best practices
and accepted idioms for writing efficient and readable code. We as-
sume that the curious reader will acquire good taste by writing and
reading code rather than merely reading this book.

What is the purpose and benefit of learning programming? In
our culture, computing is pervasive. It is common wisdom that pro-
gramming skills are helpful. On a more philosophical level, writing
computer programs is about modeling and understanding some part
of reality. Therefore, learning to code teaches how to think clearly and
efficiently.

WARNING!!" This text is dense. It introduces at least one new

http://clojure.org

CLOJURE is a general-purpose, practical
functional language, hosted on Java
platform. For a good understanding

of the design decisions involved in
creating the language, the best reading
is the history written by its creator [3].

JS

http://clojurescript.org

A dialect, CLOJURESCRIPT is hosted
on JAVASCRIPT, thus it is available in
browsers.
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concept in each example. Reading without trying out the examples
will have little effect. Copy-pasting is also discouraged since it does
not really contribute to the learning process. The best strategy is

to have interactive sessions as conversations with the computer. In
short, the general advice is Play in the REPL!



Function composition first

Programming computers can be done by using functions. But what
exactly are functions? We assume at least some vague memories of
functions from school, like f(x) = 4x? + 2x — 4. A function takes a
value and produces another value. In this example the input value
is a number, for example x = 1. In that case f produces the output
f(1) =2,since4-124+2-1—4 = 4+2 — 4 = 2. Almost all examples
of functions in high school math are of this kind: they take numbers
and produce numbers. This is a very limited usage of the function
concept. In general, the input of a function can be anything, text or
some composite piece of information; and the same is true for the
output.

What is a function in general? Metaphorically, a function is a
machine that can produce an output from some input value(s). We
expect that a machine produces valid outputs for all meaningful input
values. Thus, the sets of possible inputs and outputs are part of the
definition of a function. We also expect that we get the same output for
a particular input all the time (with the notable exception of probabilis-
tic functions).

It is one thing that we can ask a computer to evaluate a function
already available, and it is another thing one to produce a function
which is needed for our purpose. This is the difference between be-
ing a user and a programmer. Function composition is a simple way
of creating new functions. Therefore, our first goal is to understand
function composition as quickly as possible. We use the word compo-
sition in the sense of putting LEGO bricks together.

List notation for functions

For the sake of precision, we need to develop a new notation for
functions, which is more suitable for computers. For a function f(x),
the input variable is x is also called the argument of the function. For
the computer we write (f x) instead of f(x). The function symbol

f jumps behind the parenthesis but keeps a bit of distance from its
argument by putting a space between them. There can be more than

SUMMARY: The concept of a function
(from school mathematics) proves to be
useful. It just needs to be generalized
from numerical functions (number in,
number out) to any other data transfor-
mation. Function compsition also ap-
pears here as the first example of higher
order functions (whose inputs and out-
put are functions), just to demonstrate
that they are straightforward.

The mathematical definition of a func-
tion is just the precise description of
the machine metaphor in the language
of set theory and mathematical logic.
Also, the set of inputs X is called the
domain, while the set of possible out-
puts Y is called the codomain.

A function f : X — Y is a subset of
the direct product (ordered pairs)

XxY={(x,y)|xeX,yeY}
such that
1. Vxe X, dyeY: (xy)€f,
2. Vxe X, Yy, €Y:
(x,y1) € fand (v,12) € f = y1 = V2,

i.e. for each input x € X, there is at
least one and at most one outputy € Y,
giving exactly one ordered pair (x,y) in



one arguments, for example (g x y z) has three arguments. Even
there are functions with no arguments, simply written as (h). All
that matters that functions are written as a list denoted by paren-
theses. The first element is the function, the following ones are ar-
guments. By convention, we also call this list of a function and its
arguments a function call. One can think of this as grammar rule, a
minimal syntax: functions and its input arguments are written as
a list of symbols between opening and closing parens, i.e. round
brackets ‘(" and “)’.

In algebra we also write y = f(x). So where is y in programming?
That is the computer’s answer for the ‘question’ (f x). The process
of coming up with an answer is function evaluation. We can think of
the computer as a machine that has a penchant for computing func-
tions. An opening paren triggers this habit, and the first symbol, the
name of the function, determines what to do with the rest of the list.
The first element of a list is expected to be the name of a function,
the rest of the list contains input data items for the function. The
default behaviour is to compute the function. So, in order to get
answers for computational problems we have to construct functions
whose values are the solutions. This is the essence of functional pro-
gramming.

The simplest function: identity

What is the simplest function? The function that does nothing,

f(x) = x. Given the input the identity function just returns it back.

In elementary mathematics we rarely talk about more than three
functions, so the symbols f, g, h are often enough. In programming
we define tons of functions, so naming them is quite an issue (some
say the biggest). It is thus important to give functions nice names. We
call the simplest function identity.

(identity 42)
42

It works for numbers as expected. Same for text, but we have to put
the sequence of letters and other symbols into double quotes. We
will use a more technical term for textual data items, they are strings.
Numbers and strings are examples of data literals. They are values
that we write explicitly into the code or the REPL, as opposed to
computing them. In other words, they evaluate to themselves. Data
literals are literally just data.

(identity "Hello World!")
"Hello World!"”

A precise mathematical theory for
describing functions is lambda-calculus
[4]. Luckily, here we can proceed
without learning that formalism. But
it nicely explains the A symbol in the
logo.

Parentheses are the symbols () put
around a word or a phrase. In the

Lisp family of languages these are used
so often, so we got tired of using their
real names. So, instead of parenthesis
we say paren, and for parentheses
(plural) we say parens.

These are snippets of conversations
with the computer. You enter the
function call (the first line), then the
answer appears below. Instead of
writing an essay or book, which will
be read by someone else later, we have
this interactive, question-answer style
communication.
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We give the function a traditional geek greeting in a string and it sim-

ply gives it back. No surprise, no excitement. So let’s do something
unusual.

(identity identity)
#<core$identity clojure.core$identity@1804686d>

Whoa! What's that? We asked for trouble, and we got it. Something

scary came up from deep inside the system. It looks like some sort of
internal representation of the identity function. We revealed the true

identity of identity!

Poking the guts of the system is not our purpose here, so we will
not pursue this investigation any further. However, what happened
offers a remarkable insight. Functions can take functions as argu-
ments. While identity does this only as a contrived case, we will
see that there are functions designed to take other functions as ar-
guments and return functions as well. This is a big deal, this is what
makes functional programming functional.

Growing and shrinking numbers: inc dec

Let’s pretend we don’t have the numbers (except zero), so we need to

construct them. In mathematics, in order to build the set of natural

numbers N = {0,1,2,3,...}, we need only two things: zero and the

function f(x) = x4+ 1. Thus, 1 = f(0), 2 = f(f(0)), 3 = f(f(f(0))),
and so on. In CLoJuURE this function is called inc, as an abbreviation
for incrementation.

(inc 0)
1

How can we do bigger numbers? Just like in math, nesting the func-
tion, using our slightly different notation.

(inc (inc (inc 0)))
3

Observe, that when a value is expected, we can simply call another
function, since functions produce values. So in the general scheme
of (f x), the argument x can be replaced by something like (g y).
For (f (g y)) CroJurk will evaluate (g y) first, then the value will
be fed into f. Function calls can be nested. By the way, we can also
construct negative numbers by dec.

(dec 0)
-1

And no worries, we have all the numbers in CLOJURE.

Other computers may give slightly dif-
ferent answer, as this internal represen-
tation of functions is system-dependent.

Let’s say, we have a faulty keyboard.
The digit keys do not work, except zero.
Therefore, we do not have a way to
enter numbers. Not a realistic scenario,
but in foundational investigations in
mathematics it is a very important tool
(see Peano axioms).

‘Nesting” in computing means that
some object can contain some other
object of the same kind. In other words,
information is represented in a hierar-
chical manner.



Composition: comp

Nesting function calls has the unwanted effect of parentheses pil-

ing up. We can spare them by a simple trick. Instead of nesting the
function calls, we can combine the functions first then apply the com-
posite function to the argument. In mathematics we write

fog(x) = f(g(x)),

while in CLOJURE

((comp f g) x)
means

(f (g x)).

Note the order, the rightmost function in the composition gets
executed first.

We can compose arbitrary number of functions.

((comp inc inc inc inc) @)
4

If f(x) = x+ 1, then we would write this with function composition o
in algebra as (fo fo fof)(0) instead of f(f(f(f(0)))). The calculated
value is the same, but the two solutions are different, in a — let’s say —
ontological, metaphysical sense. In the composition case a new entity,
a new function is created.

We can compose different functions, if the output of one function
can be eaten by the other function. This is true for inc and dec since
they expect and produce numbers.

((comp inc dec) 1)
1

Here we create a function that takes a number, decrements it, then
increments the result. This is of course just a very roundabout way of
saying that we want the identity function for numbers.

The general identity function can also be produced by comp.
Given no arguments, it exactly returns that.

((comp) 19)
19

Consequently, comp works for a single argument as well. Given a
function, it composes the function with the identity function, so
(comp inc) is very much like inc.

11

The importance of the identity function
becomes obvious on the level of abstract
algebra: it is the neutral element of
functions under composition. What this
means for everyday programming is
that we have sensible defaults. While
most of the time we want to compose
two or more functions, nothing bad
happens if we try that with less.



Arithmetic done with functions

Computers, before they did anything else, performed arithmetic
calculations. We do not usually think about arithmetic calculations in
terms of applying functions, we just simply add, subtract, multiply
and divide numbers. This is inconsistency on our side. It is better

to get rid of it, so we will write arithmetic calculations as function
applications.

Numbers

Numbers are data literals, so they evaluate to themselves. In other
words, CLOJURE does not have to do any work to figure out their
meanings. It just returns the value itself.

=5
=5
0.12
0.12

The basic operations: + - x /

Addition is the simplest algebraic operation. Here it is in Lispry style.

+23)
5

Very unusual after writing 2 + 3 for many years, but there are nu-
merous benefits. First of all, when adding more than two numbers
together, we do not need to repeat the + symbol.

(+1234)
10

One can mentally put the + operator between the arguments, if that
helps to read the expression.

SUMMARY: Arithmetic calculations

are fundamental computations (they
were original motivators for building
computers), so programming languages
can be used as calculators. There is
nothing surprising here, except the
prefix notation, that many people
complain about. However, consistency
and elegance eventually pay off.



We can again make an important observation. A function can
have different number of arguments, from zero to many. We can
depart from the idea of operators working on two arguments only.
This might be a bit confusing for the asymmetric operations.

(- 101 2 3)
4
(/ 64 22 2)
8

These are (((10 —1) —2) —3) = 4 and (((64/2)/2)/2) = 8. Again,
the trick is to put the operators between the arguments if the ex-
pression is confusing. However, we do not have to write all the extra
parens.

Surprisingly, we can do addition and multiplication with less than
two arguments.

<+ 17
17

)

0

&

1

When there is no argument, + and * are constant functions. The de-
fault values they give come from abstract algebra (additive and mul-
tiplicative identities, neutral elements). For subtraction and division
both (-) and (/) complain about not having arguments. But their
one argument versions do rely on the default values.

GID.
-1
(/2
1/2

Yes, CLOJURE can do rational numbers (but CLOJURESCRIPT has
a weaker host, so it cannot), meaning that we can have the precise
symbolic value for %, instead of some rounded value like 0.3333333.
Another benefit of the function notation is that there is no need
for precedence rules. What is the value of 2 + 3 - 4? Well, it depends.
There are two possibilities (2 +3) -4 = 20, and 2+ (3-4) = 14. So
we have to put the parens or agree that multiplication has to be done
first. In L1isp the problem is non-existent.

(+2 (x34)
14
(x4 (+23)
20

13

Why using some fancy piece of mathe-
matics? They provide sensible default
values. We may get a collection of num-
bers over the network, and our to task
is to sum them up. Easy, but what hap-
pens if the collection is empty? Should
the program crash, or shall we do some
checking for that condition, or would
zero suffice in that case?

Being a hosted language means that
inner workings of the language are
written in a different language. For
CLOJURE the host is Java, for CLo-
JURESCRIPT it is JavaScrriprt. This also
explains why the error messages look
so strange (or familiar): they come from
the underlying host.
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The price to pay: unusual notation; the gain: no ambiguity. Thus, the
advice is: get used to this notation and you will like it.

We can also use numbers with decimal fractions, but they are
‘contagious’. Once they appear in an arithmetic expression, the result
turns into a decimal number as well.

(* 2 (+ 1 2 3.45))
12.9

(/0.7 2)

0.35

Beyond the basic operations

How about some more advanced mathematical calculations? Math-
ematical constants, trigonometric functions? They are also standard
features of any general purpose programming languages, so CLo-
JURE simply drops down to its host language. They can be found
under Math/.

Math/PI
3.141592653589793
(Math/cos 0)

1.0

People tend to complain about this
prefix notation, as they might mistake
unfamiliarity for difficulty.



Asking yes-or-no questions: predicates

The simplest type of questions are where the answer is yes or no.
These are called predicates in mathematics, and the computer says
true and false instead of yes and no. Functions that return these
logical values we call predicate functions. It is a nice habit to name
those ending with a question mark.

(zero? 0)
true
(zero? 1)
false
(neg? -1)
true
(pos? -1)
false

Some predicates are so obvious that they don’t even need a question
mark to signal their nature. We could say smaller? but we got used
to < in mathematics, and the latter is lot easier to type.

(<01
true
=11
true
(=01)

false

We can check the equality of more than two things in one go.

(=1 (dec 2) (inc @) (/ 7 7) (+ 3 -2))
true

Similarly, we can conveniently check whether the arguments are
strictly increasing or non-decreasing.

SUMMARY: Another departure from
the limited view of functions as numeri-
cal transformations only. Here we study
functions that return logical values.

It’s not exactly a top achievement

that the computer can tell that zero

is smaller than one. This is just for
demonstrating the way of asking the
questions. The real usage of predicates
will be clear when will use symbols that
can mean a wide range of values. Much
like in math, 3 < 4 is a fact, but x < 4
is an expression that depends on x, and
divides the set of real numbers into two
sets (solutions and non-solutions).
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(<123456)

true

(<1223)
false
(<=1234515)
true

The nature of things: types

Things can be classified according to their nature, based on what they
are. Forty-two is a number, comp is a function. In computing these
classes are called types.

(number? 42)
true

(number? comp)
false

(fn? 42)

false

(fn? comp)

true
CLOJURE is strongly and dynami-
There are further distinctions for numbers, roughly following the cally typed, meaning that every data
item has a well-defined type which is
checked when the program is running.
So, you don’t need to type types (no

types of numbers we have in mathematics.

(integer? 3) pun intended).
true

(rational? (/ 1 2))

true

However, there are some subtle differences from the mathematical
classification of numbers. Numbers with decimal fractions have a
different representation, bit more complicated then storing integer
numbers. They are called floating point numbers. So 3 is the same as
3.0, but their types are different.

(integer? 3)
true

(float? 3)
false
(integer? 3.0)
false

(float? 3.0)
true



Strings

In elementary mathematics we mainly deal with functions that take
numbers and produce numbers. As a departure from that, we intro-
duce functions that work with textual information.
First terminology. In computing, letters and symbols are called
characters, and words and sentences are called strings. This is not Note that strings have parts.
just arbitrary naming. It is act of abstraction. With a more general
concept, we can cover more things: characters are not just letters, but
numerical digits, punctuation marks, other signs, whitespaces and
control characters. A character is a symbolic unit of information. In
CLOJURE characters are denoted by a starting backslash.

(char? \a)
true
(char? \8)
true
(char? 8)
false

Strings are sequences of characters. The sequence can be empty,
or just a few characters long, or a whole novel. They are denoted by
double quotes.

(string? "tumbleweed")

true

(string? "")

true

(string? "Alice: How long is forever?")
true

Strings and characters are different things. This is easy to see as
strings tend to have more than one character, but the edge case of a

string consisting of a single character might be confusing. In the CLOJURESCRIPT dialect, the
answer will be different, since the

=\a "3" underlying language, JavAScrIPT does
S not make the distinction.

false
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Similarly, a number and a sequence of characters (digits) are of differ-

ent fypes of data. Therefore, they are not equal even if in some sense,
for us, they represent the same quantity.

(= 42 "42")
false

This also shows a fundamental fact: anything can be represented

as text, therefore as strings. We can create strings from anything by
using the str function. It takes arbitrary number of arguments, con-
verts each arguments into a string, then joins them into one string.

(str \a \b \c \space \1 2 (inc 2))
"abc 123"

Before we introduce other string functions, it makes sense to
do a technical step to avoid typing much. For example, there is
a function called upper-case that given a string returns another
with the same letters but all capital. This function’s full name is
clojure.string/upper-case. It’s rather long and it would be tedious
and unreadable to type it often. After entering

(require '[clojure.string :as string])
we can use advanced string functions easily.

(string/upper-case "old pond frog leaps in water's sound”)
"OLD POND FROG LEAPS IN WATER'S SOUND"

(string/capitalize "i forgot.")

"I forgot."

(string/capitalize (string/lower-case "DO NOT SHOUT!"))
"Do not shout!"”

Much of string processing is about dealing with parts of strings (sub-

strings).

(string/ends-with? "banana"” "na")
true

(string/starts-with? "apple” "pp")

false

A powerful way of transforming strings is by replacing substrings.

n on n o n

(string/replace "Banana and mango. an” "um")
"Bumuma umd mumgo."”

What happens here is that string
functions live in a different namespace,
which is like being in a folder. We
just give a more convenient access

to that folder. Other programming
languages might say that we load a
library. Organizing your software
properly into namespaces, modules,
libraries is a very important part of
software engineering, but it will not be
discussed here.

The most advanced way of dealing
with strings is using regular expressions,
which is sort of a mini language itself.



List, the most fundamental collection

Simple values, which mathematicians would call scalars, are the
atoms of data. Numbers and logical values do not have any parts, we
treat them as a single unit. However, the world is more complicated
than that, so the data describing everything around us comes in
bigger chunks. Data structures are combinations of scalar data and
other data structures. If the simple scalar data items are the atoms,
then compound data structures are the molecules of the world of
information.

Collections are straightforward examples of compound data struc-
tures. They are ‘things’ as well. A bag of five apples is not the same
of five apples. The bag is easier to carry.

Since we have pieces of data which contain some parts, a new
question arises. How to access the parts of data structure? The differ-
ent strategies for addressing the elements of a collection lead us to
different collection types.

Creating lists

Lists are the most fundamental data structures in Lisp-like lan-
guages. They are simple a bunch of items in a sequence inside a

pair of parentheses. Looks familiar? Sure! We have been using them
from the beginning. Function calls are represented as a list. Given

a list, CLoJURE will try to call the first element as a function with
the remaining elements as arguments. It is so eager to evaluate, that
if we just want to have a plain list of numbers, then we need to tell
CLOJURE explicitly to stand back and not to try to evaluate the list as
a function call. We have to quote the list. Otherwise, we get an error
message saying that a number is not a function.

(12 3)
(a2 3)

The apostrophe is just a shorthand notation. The full form of quoting
looks like a function call.

At another level of abstraction we
could treat scalar values as composite.
For instance, an integer number has a
binary representation, a sequence of
zeros and ones, called bits, grouped
into bytes. However, here we treat
numbers atomic.

The name Lisp stands for LISt Process-
ing.

This is the code-as-data philosophy of
Lisp. The technical term is homoiconic-
ity, the same-representation-ness in
ancient Greek. The upshot is that pro-
grams can work on lists, and programs
are written as lists, so programs can
work on themselves.
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(quote (1 2 3))
(12 3)

However, if you have the suspicion that quoting is not really a func-
tion call (since the argument is not evaluated), then you are right. It

isa special fOi’ m. For now it is enough to know that the
purpose of special forms is to do things

Alternatively, we can use the list function that takes arbitrary that  function call.
at are not runcuon calls.

number of elements and put them together in a list.

(list (* 6 7) (inc 100) (/ 9 3))

(42 101 3)
We can also construct a bigger list by combining an element and a
list. Lists prefer to connect to elements in
the front. The first element is the most
(cons @ (list 1 2 3)) accessible one, for all the other we have
@123) to walk through the sequence.

Here we called the cons function with a number 0 and a list (1 2 3)
freshly created by list,

o (J—)—

and it returned a longer list containing @ as well, attached to the
beginning of the list.

(o)— 1 —2—3)

There is no restriction on what sort of elements you can have in a list.

Compare lists to strings, that are
sequences of characters only.

(cons "a string!” (list 1 2 3))
("a string!” 1 2 3)

The structure of lists

How about if we want to dismantle a list? That can be done along the

same scheme: we separate the first element and the rest of the list. Historically these functions first
and rest were called car and cdr
(first '(5 10 15)) referring to memory locations in the

IBM 704 computer, in the late 1950s.

5 And continued to be called like that
(rest '(5 10 15)) long after those machines disappeared.
(10 15) Sometimes it is nice to break with the

tradition.
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The name of nothing: nil

Now, a tricky question. What is the first element of the empty list?
Well, it’s nothing. But remember, the computer needs precision, we
have to be exact even when we talk about nothing. Therefore noth-
ing, the void, the vacuum, the nonexistent, the empty, the oblivion is
called nil.

(first ())
nil
Note that the empty list needs no quoting, since there is no danger to

take the first element as a function. Only nothing is nothing, every-
thing else is something.

(nil? )
false

(nil? O)
false

(nil? false)
false

(nil? nil)
true

What is the rest of the empty list? We agreed that rest will return a
list no matter what. Also, we cannot produce a non-empty list from
thin air. That leaves only one choice.

(rest ()
O

Size of a list

We can ask for the number of elements contained in a list.

(count '("a” \b 1.2))
3

There is a predicate for deciding whether a list is empty or not.

(empty? ()
true

(empty? '(1 2))
false

If empty was not available, how can we test for emptiness? We
could use the size of the list. For example, (zero? (count ’(1 2))).



22

Concatenation

We can build lists by using other lists as building blocks, by connect-
ing them in a given order.

(concat '(1 2) '(3 4))

(123 4)
(concat '(3 4) '(1 2) '(5 6))
(341256)

concat can take arbitrary many arguments, including one and zero.

(concat '(\a \b c))
(\a \b \c)
(concat)

O

Concatenating a single list is just that list. Concatenating nothing is
just another way to produce the empty list.

reverse and last

Here are two self-explanatory functions for lists.

(reverse '(1 2 3 4))

(4321
(last '(5 6 7))
7

But what if only reverse was available. Could we somehow get the
last element of the list without 1ast? The last element is the same
as the first of the reversed list. We have first, so simple function
composition works.

((comp first reverse) '(5 6 7))
7

This is a recurring theme in the learning
process. Pretend that some existing
function is not available, then write it.



Vector, sequential collection that is also a function

Vectors are sequences of some elements enclosed within square

brackets. On the surface they very much look like lists, but with a

different delimiter. We’ll see later that differences between lists and Using other delimiters beyond paren-
vectors are fundamental. We can create a vector the short way as a theses is a great innovation of CLOJURE.

data literal
[1 2 "three"]
or the long way, by using the vector function

(vector 1 2 "three")
[1 2 "three"]

or we can turn another collection (here a list) into a vector.

(vec "(1 2 "three"))
[1 2 "three"]

Even just on the surface, vectors are great because we don’t need to
quote them. A vector is not a list so no one tries to evaluate it as a
function call. So whenever we want to write down a sequence of el-
ements, we’d better use vectors. The differences between lists and
vectors are lot deeper than this. In a list we can access its elements
one-by-one, walking through its structure by first and rest. If we
want to get the last, we have to visit each element. Vectors are more
accessible. They are indexed, meaning that each element has an associ-
ated integer number starting with @. For instance, the vector ["a" "b"
"c"] can be visualized as a lookup table.

0 1 2
"aH llb” "C”
.q. . . In mathematics we say the vector
It is like a function that produces elements for index numbers. In- is a map from N, the set of natural
deed! numbers to a set of objects (the things

we can store in a vector).

(["a" "b" "c"1 @)

nn

a
([nau nbu ”C”] 2)

n_n

C
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Now this is something that really widens the concept of a function!
A data structure that doubles as a function. Yet another example of
data-as-code. A weird puzzle:

((Comp [uau " "C"] [2 1 0]) 0)

n_n

C

Why?
There is of course a more pedestrian way to get the values from a
vector. We can just ask for the nth element.

(nth ["foo" "bar"] @)
"foo"
(nth ["foo" "bar"] 1)
"bar”

Accessing the elements of vectors is not as forgiving as first, rest
for lists. Using an index goes beyond the elements in the lists results
in an error.

Constructing a bigger vector can be done by conjoining an ele-
ment.

(conj [11 13 171 19)
[11 13 17 19]

Vectors like to connect at the end and it is easy to see why. Connect-
ing anywhere else would mess up previous associations. Note that
the order of the arguments for conj reflects this, just as in cons for
lists.



Making memories

The difficulty of talking to a mathematician lies in the continuous
demand for defining all the terms. ‘What exactly do you mean by
that?” — the oft-repeated question asks about the meaning attached
to words. Same for the computer, everything has to be defined. For
instance, (+ x 1) has no meaning unless x is defined. Luckily, we
can attach meaning to x. We just call this process differently: sym-
bol binding. This can be done in two ways, one permanent and one
temporary.

Long term memories

With def we can permanently associate a name with a value. Though
seemingly follows the syntax of function call, def is another special
form.

(def x 2)

We don't display how the REPL reports
successful definitions. It varies for
different REPLs.

So, x now refers to a value, which is its meaning.
Cr—>

Once defined, we can use the name x, and it will evaluate to its
bound value. Wherever we want to use 2, we can write x instead.
The computer will know what we are talking about.

¢ x 1)
3

In technical language, we call the words with meaning used in
CLOJURE symbols. The symbols can be just single letters, or a se-
quence of letters mixed with numbers and some other signs like ?,-,_,
etc..

We can also tell CLOJURE to stop figuring out the attached mean-
ing. If we quote a symbol, we get the symbol back.

X
X
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Where are these definitions stored? It is called the environment, and
it is the memory where every well-formed expressions in the REPL
gets its meaning from. This can be thought of as long-term memory.
This metaphor gives a hint why that redefining memories is not a
good idea.

Since both symbols and strings are just sequences of characters, it
is very important to distinguish them. The string "x" is a data literal,
just a piece of data that evaluates to itself. The symbol x is a name for
something else, for example a piece of data or a function. It can also
be undefined. Note that quoting symbols and the double quotes for
strings are different.

(symbol? 'x)
true

(symbol? "x")
false
(string? 'x)
false
(string? "x")
true

Short term memories

Often we want to store the results of partial computations, in order to
save work. Instead of
(+ (2 ¢67))
(/3 (+617))
(-2 (¢67)))
198/13
we could do

(def r (+ 6 7))
+>*x2nr
(/3 r)
(-2r)
198/13

computing (+ 6 7) only once, not three times. However, this ‘pol-
lutes the environment’ by leaving r defined. We only want r to have
some meaning until we evaluate the expression. let lets us do that.

(let [r (+ 6 7)]
(+ (x2r)
(/ 3 r)
-2nr)))
198/13

Here the input spreads over several
lines. This is no problem, CLoJUREWill
know that you are not finished when
you hit ENTER, since opening parens
are not closed yet. When the expression
is finished, it will acknowledge that by
evaluating it.
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This is another special form. The temporary bindings are given in a
vector. There can be more bindings, but they should come in pairs:
symbol first followed by a value to bind to.

The bindings are only valid in the inside let. If the symbol is
already bound to some value in the environment, that value becomes
inaccessible, the let binding ‘covers’ it.

(def x 11)

(let [x 11 (inc x))
2

X
11

The bindings are done in order, so we can use a binding immedi-
ately to define another one.

(let [x 1
y (inc x)
z (+ x y)]
(str "x: " x "y: "y " z:" 2))
"x: 1y: 2z: 3"

This example also illustrates an important use case for let bindings:
when we have several pieces of partial computations we can just
give them names, and then for assembling the final result of the
computation we can refer to them by their names.



Defining functions

When we keep repeating the same computation only with different
input data, we should write a function instead. In this view, a func-
tion is just some computation with some details left out: the inputs
remain unspecified. Thus, a function is an abstract computation we
can use and reuse later by specifying the inputs.

In a more traditional introduction to programming, defining func-
tions would be the second step, right after the arithmetic operators.
In CLoJURE we have other ways of creating functions: compositions
and the associative data structures with functional behaviour. The
issue of crafting functions is less urgent, but this does not diminish
its significance. We solve problems and build systems by defining
functions.

One way to think about functions is that they are great work-
saving tools. Same as in algebra, we use a single letter to denote a
multitude of choices of things, most notably numbers. For example,
when talking about square numbers, I can mention a few: 5-5 =
52 = 25,11 -11 = 112 = 121. I can also refer to all square numbers
by writing x - x = x> when x is any natural number. Same happens in
programming. We can do concrete calculations,

(x 2 2)
4

(* 12 12)
144

but soon we would get tired of typing the numbers twice. Therefore,
we replace the numerical value by a symbol, for instance x. Thus, we
get an abstract expression (* x x), whose value depends on x. This x
is a hole to be filled later. Where do we get the meaning of x?

The value for x can come from the environment. For instance, after
(def x 2) the expression (* x x) evaluates to 4; after (def x 12)
to 144. This method is not recommended. First, we have to be very
disciplined by using the symbols: the symbol in the definition has
to match the symbol in the abstract expression. Second, we make
permanent changes to the environment by attaching meanings to

The principle of 'repeated computations
should go into a function” also works
the other way around. You shall only
write a function if you already have several
working concrete examples of the code. This
is one of the most essential pieces of
advice!

This is the big conceptual leap: ab-
straction. Fortunately, it is taught very
early in math education, so it is a nat-
ural idea for most people. Elementary
mathematics is indeed very useful for
learning programming.

The official term for a ‘hole” in an
abstract expression is free variable.

Humans are really bad at administra-
tion. If we have to write the same thing
at two different places, sooner or later
we will write something else and get
genuinely surprised by inconsistent
results.



symbols. This is a recipe for disaster — imagine two abstract expres-
sions using the same symbol, but expecting different meanings.

Local bindings are much better for providing values for abstract
expressions.

(let [x 2] (* x x))
4

(let [x 12] (* x x))
144

However, we now have the input value and abstract computation
mixed together. A corresponding function definition looks very much
like a let statement: (fn [x] (* x x)). But there is no value bound
to x. How come? Well, this is a function, so whoever calls the func-
tion will provide the meaning for x.

((fn [x] (* x x)) 2)
4

((Fn Ix] (*x x x)) 12)
144

We separated the abstract code from the input value, making the
abstract part reusable. Here we create a function, apply it to some ar-
gument(s) and throw it away, it is not bound to any symbol. Coming
up with good names for functions is often mentioned as the sin-

gle most difficult problem in software engineering. So, it is nice to
have the option of not naming them when they are short and self-
explaining.

Of course, we can make memories, where the value attached to a
symbol is a function. We can make a definition (def square (fn [x]
(* x x))), but this comes up so often so there is a shortened way to
define named functions.

(defn square
[x]
(* x x))

The special form defn reads as ‘define function’. The name of the
newly defined function is square. The following vector contains the
input parameter of the function (here just a single x); then finally
comes the body of the function: an abstract arithmetic expression.
After this function definition, we can calculate square numbers in an
elegant way.

(square 2)
4

(square 12)
144
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The official term is lambda function for
anonymous, throw-away functions.
Again, see the CLOJURE logo.
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When the square function is called with number 2, the function’s
input parameter x is bound to 2, so evaluating its body gives 4. One
can think of as substituting a concrete value into x. Important to
note, that this assignment is temporary, just valid for the function
call. So even if x is defined in the environment, it has no effect on the
function’s value.

(def x 3)

(square 10)
100

X

3

There is a global binding of x and a local in the function. The function
has its own little environment.

The real great thing about functions, that after writing them we
can forget about their details. They are indistinguishable from CLo-
JURE’s own functions. Therefore, we can use this newly defined
function as many times I want, no restrictions.

It is conceivable that a function does not have an input argument.

(defn greetings
[]
"Hello world!")

There is no input to depend on to have different output values, so

this is a constant function. (greetings) will always evaluate to "Hello

world!". Also, the function body is quite simple, just a string literal.
There can be more arguments.

(defn rectangle-circumference
[a b]
(* 2 (+ ab)))

(rectangle-circumference 3 2)
10

Lambda function shorthand notation

Anonymous functions save us from the burden of naming them,
but we still need to do some naming. We have to give names to the
inputs of the function. Luckily this can be avoided as well.

(#Cx % %) 5)
25



The hashmark indicates a function literal and the % symbol refers
to the argument of the function. If there are more arguments then
numbering can be used % or %1 for the first argument, %2 for the
second, and so on.
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Manual function calls

Given a bag of apples, before eating the fruits, we need to unpack
them. Even if it contains several items, here the apples, a bag is one
thing. Removing the container, the paper bag, is an essential step.

Removing the packaging is something we need to do in program-
ming as well. There is a clear distinction between a function taking n
arguments and another taking a list with n elements. For the latter,
there is only one argument. For instance, addition expects a bunch
of numbers and it would not work with a list or a vector. So, (+ [10
11 12]) gives an error message, since the + function expects num-
bers and doesn’t know what to do with a vector. The numbers are
packaged in a vector, + cannot consume them.

The apply function solves the unpacking problem. It can feed the
elements of a collection properly as arguments to a given function. In
general,

(apply f [x y z])
evaluates to

(f xy z)
which is just calling the function f with arguments coming from the
collection. For instance, here is how apply helps in calculating the
sum of numbers in a vector.

(apply + [10 11 121)
33

Another example is the pair of functions max and min. They take
multiple arguments and return the biggest/smallest one of them. If
we call them with a single argument, they just return that.

(max 5)
5

It is straightforward to find the maximum when we have only a
single thing. There is nothing else to compare to. One may not expect
that, but the same happens when we call it with a collection.

(max [22 11 331)
[22 11 33]

SUMMARY: The seemingly technical
step of unpacking a collection is the
general mechanism for calling functions
with arguments.



This may not be the answer we are looking for. If we want to find the
maximal element of the vector, we need to use apply.

(apply max [22 11 44 33])
44

Similarly, the function str converts its arguments into strings and
concatenates them into one big string.

(str [\h \e \1 \1 \ol)
"[\\h \\e \\1 \\1 \\o]”

The answer is correct, str turns the vector into a string, but it may
not be what we expect. If we want to turn a sequence of characters
into a string, then we need to use apply.

(apply str [\h \e \1 \1 \ol)
"hello”

apply accepts multiple arguments, but only the last argument will be
treated as a collection containing more arguments. Therefore only the
last argument will be unpacked if it is a collection.

(apply str "Hello” " " [1 2 3] " " [\w \o \r \1 \d \!])
"Hello [1 2 3] world!”

Why is it called apply? If the purpose is unpacking collections,
then why choosing a name that clashes with the “applying a func-
tion” expression? The answer is simple, because it is really function
application. It is somewhat manual: apply takes a function and a
collection of arguments and applies that function to the arguments.
This process is automatically triggered by the opening paren, but we

can also do it explicitly. The same argument as above, just backwards:

the automatic function application (f x y z) can also be written as
(apply f [x y z1).

Collection unpacking is just a special use case of apply, though
probably the most accessible one.
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Why the extra backslashes? Backslash
is used to indicate characters, so if we
want to have backslash as a character,
we need to ‘backslash’ it.



Lazy sequences of numbers

. . . SUMMARY: We capture the concept
In programming we often need to produce an ascending list of num- of infinity inside a computer finite

bers. Therefore this task is automated. The range function can pro- resources. Laziness is the key.

duce numbers starting from zero up to a limit.

(range 13)
(012345678910 11 12)

The limit is not included in the result, so (range 0) is a synonym of
the empty list.

When two arguments are given to range, they are interpreted as
the start of the sequence and the end of the sequence.

(range 2 10)
(234567809

The third argument can change the step, which defaults to one.
By changing the step size to two, we can produce the even and odd
single digit numbers.

(range 0 10 2)
(0246 8)
(range 1 10 2)
(13579

As the function implements a general mechanism, range is not lim-
ited to integer numbers.

(range 1.1 4.2 0.5)
(1.11.6 2.1 2.6 3.1 3.6 4.1)

Up to this point range gave nothing surprising. But what happens
when we give no argument at all? The start point defaults to zero,
but what is the limit? Well, there is no limit, or as mathematicians
would say, infinity is the limit. Without arguments, range returns the
list of all natural numbers. The following definition is valid,

(def natural-numbers (range))
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and the binding is done immediately. The computer now has IN, the
infinite set of natural numbers bound to the symbol natural-numbers.
How is this possible? How can we fit infinitely many numbers into
the machine that has finite memory? Being lazy is the solution. Not
doing anything until the last minute, unless explicitly asked. Thus
the burden is on who is asking for an infinite set. The computer says:
“as long as you can take them, I can produce these numbers. So,

you can never catch me lying about infinity. But if you don’t ask, I

will not do anything.” In practice, however, there are limitations. If It is a good idea to try this. One has to
know how to stop a computer program

we force the REPL to print natural-numbers, it will sooner or later )
when it goes rogue.

produce some error message complaining about memory not being
sufficient enough.

What is the purpose then? It is useful not to set artificial limits
to computations. We can do computations on demand, so we can
deal with arbitrary big instances of a problem, memory permitting
of course, but without doing any administration to change limits. We
do not have to imagine in the beginning where exactly we will stop
the process. The code becomes less specific and consequently more
flexible.

Laziness is a crucial idea, its usefulness will become apparent later.
For now, let’s see how we can deal with an ‘infinite list” in practice.
We can take the first five elements.

(take 5 natural-numbers)
@1234)

We can also take the second five elements by dropping the first five
first (still producing a lazy infinite list).

(take 5 (drop 5 natural-numbers))
(56789

When we don’t know how many elements are needed, we can make
it the taking and dropping more flexible by giving a predicate.

(take-while neg? '(-2 -1 @ 1 2))
(-2 -1
(drop-while neg? '(-2 -1 0 1 2))
@1 2)

take-while collects the elements from the original sequence as long
as the predicate returns true when applied to the elements and stops
when it gets false; drop-while discards elements as long as the con-
dition is satisfied, then returns the rest. Note that these two functions
may not process the whole collection. They stop when the condition
fails for the first time.
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(take-while zero? [0 0 1 2 0])
(0 9)



Functional collection transformation

As a recurring activity pattern, we often need to do the same oper-
ation on the elements of a collection. As a real life example one can
mention peeling oranges. We do the same thing to all oranges, we
peel them. In programming we say that we transform the elements

of a collection. In functional programming this is automated. If you
want to call the same function for all elements of a collection, we
don’t need to bother with doing it one by one. We just map a function

across the elements of a collection: The name ‘map’ may not be the most
(map f [x y z1) intuitive (it will also clash with hash-

. maps), but what would be a better
will evaluate to term?

((fFx) (Fy) (f 2))
The archetypal example appears in every functional programming
introduction.

(map inc [1 2 3 41)
(2 345)

The result is constructed as ((inc 1) (inc 2) (inc 3) (inc 4)).
When processing a collection, the right way of thinking is to figure
out how to deal with a single element of a collection, the rest is done
by map. This means that we need to supply a function that takes an
input, namely an element of the collection. Let’s say we want to turn
names into greetings. We have a collection to process:
["Curious George" "Shimajiro" "world"]
We have to give the way to transform an element of this vector. We
take a string and append Hello in front and an exclamation mark at
the end.

(defn hello-message
[s]
(Str ”Hello n s "!”))

Now we can use map to transform the whole collection. It is a good practice to use anonymous
functions in a map call. However, for
(map hello-message ["Curious George" "Shimajiro” "world"]) beginners this is a source of trouble.

It is a good idea to write and test the
function separately then give it to map,
until one gains enough confidence to
write functions on the fly.

("Hello Curious George!" "Hello Shimajiro!" "Hello world!")
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Is map lazy?

(take 2 (map inc (range)))
2

Yes. Otherwise we would not be able to talk about transforming
infinite collections.
Is map restricted to single-argument functions? No.

(map + [1 2 3] [40 50 60] [700 800 9001)
(741 852 963)

It takes the first element from each supplied collection to make the
arguments of the first call of the mapped function, then the second
elements, and so on. Clearly, the supplied function should be able to
take the right number of arguments.



Selecting things from sequences

Selecting things from a sequential collection is nicely automated.
Imagine we have a vector full of all kinds of stuff, and we need to
separate the elements by their nature, by their type. The function
filter takes a predicate (a yes-or-no question) and a sequential col-
lection as its second argument. Then it goes through the collection,
applies the predicate to all of its elements, selects those that give a
yes answer, and finally returns a newly built list of selected items. We
can separate the elements by separating by their types.

(def v [-1 @ 2 "two" 'foo 42 "42" -6])
(filter number? v)

(-1 @ 2 42 -6)
(filter string? v)

("tWO" II42II)
(filter symbol? v)
(foo)

Since filter also returns a collection, we can do filtering again on that
to get some finer selection.

(filter even? (filter number? v))
(@ 2 42 -6)

People seeing map and filter for the first time might have some
problems distinguishing between the two. So it is instructive to put
them side-by-side.

(map pos? [-2 @ 1])
(false false true)
(filter pos? [-2 0 11)
m

If we map a predicate over a collection, we get a list of logical values.
When filtering, based on the returned value of the predicate applied
to an element, we decide whether we need to put the element into
the result collection or not. The size of the result for map is the same

People coming from programming
languages of the imperative style may
ask ‘Where is my for-loop?’. The short
answer is that there is no need for them.
Higher order functions like map and
filter (and other constructs later) give
the same functionality of going through
a collection and doing something to

the elements; with the added bonus
that we don’t have to fiddle with a loop
variable.
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as the input collection, for filter it can be the same size (predicate
says true for all), smaller, or even zero, when there is no positive
answer.

Sometimes we want to select the elements for which the predicate
returns false.

(remove zero? (filter number? v))
(-1 2 42 -6)

The name of the function is a bit misleading, by immutability, no
elements are removed from vector v. A new list is created for the
numbers, leaving out zero.



Decision making — conditionals

When selecting elements from a sequence, we only need to supply

a predicate function that describes the desired property. Then, the
individual decisions for keeping or discarding elements is made for
us implicitly by filter and remove. However, in other situations we
want to make decisions ourselves explicitly, independent of collection
processing. We are right, without the ability of choosing between

alternatives, we would only have a fancy symbolic calculator. Having conditionals is a decisive
feature, as it was discovered by Charles
Babbage in 1837. He switched from

l:f the Difference Engine project to the
Analytical Engine, but never finished
it. This probably delayed the birth of

The simplest way of making a choice is the if-then-else form. We computers by a century.

understand this very well as we use it in natural language. If some
condition is true, then we have the consequent, otherwise we get the
alternative. In real life, we say we choose between actions, here in a
functional language we choose between two values.

Here is a function calculating the absolute value of a number.

(fn [al
(if (> a @)

a
(- a)

Is there a way to calculate the absolute value without if?

(fn [al
(max a (- a)))

However, we simply delegate the decision to max, only making the
decision invisible, the implementation of max has the if.

In an if form not all elements are evaluated. The condition after
if is evaluated first. If true, then the consequent is evaluated and that
is the value of the if form (and the alternative not evaluated at all -
why bother if its value is not needed?). If the condition is false the
alternative is evaluated, giving the value of the form. Therefore, if is
a special form, not a function call.
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Let’s say we would like to calculate a + |b|, where a,b € R. With a
and b bound to numerical values and using the definition of absolute
value, the straightforward, ‘prosaic’ way to write the expression is

(if (> b @)
(+ ab)
(- a b))

as we need to choose between two cases. There is a ‘poetic’ way
as well, in a sense that we can express a deep truth with very few
words.

((if > b o) +-)ab)

Here we emphasize that functions are first class citizens, they are
treated as any other values.

cond
For more complicated, non-binary decisions we use cond.

(defn what-is-it [x]
(cond (number? x) "number"”
(string? x) "string"
(fn? x) "function”
true "no idea")

The conditions are evaluated one-by-one in order. When a condition
evaluates to logical true, the corresponding consequent gets evalu-
ated and returned. If no condition matches, nil is returned.

Instead of true as the last condition, it

is customary to use :else. This is not a
special syntax, it is a keyword (used in
hash-maps).



The logic of truthy and falsey

How to express more complicated conditions? Just as in everyday
language, we can negate statements if we want to say the opposite,

(not true)
false
(not false)
true

connect them with and to indicate that they are all true,

(and true true true)
true
(and true false true)
false

and use or if only one of the choices needs to be true.

(or false false false)
false
(or false false true)
true

When evaluating expressions with and and or, we can be lazy again.
For and we can quit when we find a false value, and similarly we can
quit when evaluating or when we find a true value. Those alone can
decide the value of the logical expression.

Truthy, falsey

So far so good, but let’s now discuss a peculiar language feature. In
CLOJURE we are more generous about how the logical values true
and false can be expressed. Both false and nil are treated as false,
every other value is treated as true. That is, whenever a logical value
is expected, we can put any other value there. This can be a blessing,
when we know about it, or a curse, if we don’t. For example we can
use any value as a condition in an if statement.

Short-circuit evaluation is the computer
science term for trying to save work
when making decisions.

People coming from languages with a
strict type system may find this hard

going.
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42 "hello"

*(\a \b) L] (7]
\ {:a 2}
[1 2 3] X 3.14
#{}
O inc {3 1
nil? \space #(3 43 3

n on

(if true "consequent” "alternative")

"consequent”

n on

(if @ "consequent” "alternative")
"consequent”

(if () "consequent” "alternative")
"consequent”

n o n

(if [] "consequent” "alternative")

"consequent”

n on

(if + "consequent” "alternative")

"consequent”

n o n

(if nil "consequent” "alternative")
"alternative”
(if false "consequent"” "alternative")

"alternative"

So logical expressions can be truthy or falsey. Note this does not turn
nil into false, or 1 into true,

(true? 1)
false

(true? true)
true

(false? nil)
false

(false? false)
true

Figure 1: Falsey is nil and false, truthy
is everything else.



but in decision making situations we are quite liberal about what
counts as truth. What are the benefits? The flexibility in expressing
selections. For instance, we can easily filter out nils and falses from
a collection.

(filter identity [1 2 nil \c "hello” nil false])
(1 2 \c "hello")

Truthiness is also good for the efficient evaluation of logical ex-
pressions. The special form and evaluates its arguments until it find a
falsey one,

user=> (and (< 4 5) false (range))
false

user=> (and (= 1 (inc @)) nil (range))
nil

note that the dangerous (range) is not evaluated at all; or if they are
all truthy it returns the last.

(and (< 45) [11[1 2D
[1 2]

The returned value may feel strange, but an if statement would
interpret this as a yes. The form or does the opposite, it returns the
first truthy, or the last falsey if they are all falsey.

(or nil false 1)

1

user=> (or false nil)
nil

Negation also accepts truthy and falsey values, and produces genuine
true/false answers.

(not nil)
true

(not "hello")
false

Whenever you are in doubt, whether a value is truthy of falsey, you
can coerce it to an honest logical value, which we call in computer
science boolean.
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(boolean nil)
false

(boolean false)
false

(boolean [1)
true

(boolean 0)
true



Reducing a collection

Often we need to make a single value out of a collection. Or another
collection, for that matter. Reducing is a very general operation,
therefore it may be perplexing first. A visual image may help to get
the idea. Imagine a child collecting pebbles on the seashore. Picking
up stones with the right hand, while holding the already collected
ones in the left palm, or in a small bucket hold in the left hand. Or
the child can decide not to gather all pebbles, just the most beautiful
one. For each newly picked up pebble, she compares it with the one
held in the left hand, and decides which one to keep. In both cases,
some result is accumulated in the left hand.

Let’s see how to collect pebbles in CLOJURE, or rather keywords
into vectors.

(reduce conj [1 2] [3 4 5])
[12345]

Here we have an initial collection [1 2] (the pebbles already in the
bucket), and the numbers in a vector [3 4 5] to be collected (the peb-
bles still on the beach). ‘Putting a pebble into the bucket’ is done by
conjing them one by one to the existing collection. The fact that we
only see the result may hinder understanding the reduction process.
Luckily, it is possible to see the accumulation step-wise.

(reductions conj [1 2] [3 4 5])
([1 2301 23]C01234][012345]

Reducing some elements into a new collection is such a common
operator that there is a dedicated function for that. Roughly speaking
into is just reduce conj.

(into [1 2] [3 4 51)
[12345]

Now for finding the most beautiful pebble. This is the same type of
problem as finding a maximal number from a collection of numbers.

map, filter and reduce form an ex-
pressive set of collection processing
functions. All we need to do is to sup-
ply a function that can deal with a
single element of a collection, the rest is
automated.
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(reduce max [1 21325461 2])

6

(reductions max [1 21325461 2])
(122335566 6)

Here we didn’t specify the initial value of the reduction, the first
value of the vector can serve as the initial value.

At this point it might be difficult to see the difference between
apply and reduce, since in special cases they produce the same result.

(reduce + [1 234567 8 9])
45
(apply + [1 234567 8 9])
45

However, the shape of the process is different: apply yields (+ 1 2
3456 7 8 9) while reduce will go through steps (+ 1 2) (+ 3

3) (+64) (+105) (+156) (+217) (+ 28 8) (+ 36 9). What
happens is that reduction requires a function with 2 arguments, the
so called reducing function. Its first argument is an accumulator, some
data in which we collect the result of the computation. The second is
an element from the collection being processed by reduce. Here is a
simple example of a reducing lambda function: (fn [c _] (inc c)).
This ignores its second argument, but whenever it gets a new one, it
increments the counter. This can be used for re-implementing count.

(defn my-count

[coll]

(reduce (fn [c _] (inc ¢))
0
coll))

The _ symbol is used for an argument that is not used in the body

of the function. It is just a convention, the underscore is a symbol as
good as any other. This emphasises that we don’t need to process the
elements when we just want to count them. Here is another example,
where the collection is just used to provide the number of steps.

(reduce
(fn [v x]
(conj v (+ (last v)
(last (butlast v)))))
(e 1]
(range 15))
[01 123581321 345589 144 233 377 610 987]

These are the first 17 of the so called Fibonacci numbers.
The general form of reduce is this.

The + function with multiple arguments
will do reductions internally anyway,
so ultimately they realize the same
process.
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(reduce (fn [result-so-far next-item]
(compute-new-result result-so-far next-item))
initial-value
collection)

Depending on the body of the reducing function (how the updated
result is calculated by compute-new-result), the behaviour can be
really versatile. The initial value is optional. When missing, the first
element of the collection is taken to be the initial value, and the sec-
ond element serves as the first next-item.

We can easily imagine the shape of the process of a reduce call.
For instance,

(reduce rf initial-value [x y z])
turns into

(rf (rf (rf initial-value x) y) z),
since reduce takes the responsibility of calling the reducing function
rf for the elements of the given collection, as well as setting up the
very first call.



Hash-maps

Association is a mental connection between things and ideas. The
most common example is naming. We associate meaning to words,
that are sequences of letters. When we have several associations at
the same time, like several word, then we need a dictionary. These
are called hash-maps in CLOJURE.

Another way to understand hash-maps is that after introducing
vectors, we should do a powerful abstraction. A vector associates
things, some values to numbers 0,1,2,3,.. ., to the so-called indices.
We have index-value type pairings. This is useful for some things
in an ordered sequence, but it is a very special association. What if
the indices can be anything? What if we could map any value to any
other? That’s what hash-maps do. The name is unfortunate, since it
describes how these associations are implemented, and not what they
do. Lookup table might be a better name, but we are stuck with the
old name. Still about terminology, we call the generalized indices
keys.

Curly braces indicate a hash-map, and we simply write the key-
value pairs inside.

{"answer” 42 "question” "?" 2 "two" "list" '(1 2) O '(3) }
{"answer" 42, "question "?", 2 "two", "list"” (1 2), (O (3)}

The computer politely puts commas after the each key-value pair.

We can do that as well, but it is not necessary. We associate the string

"answer” with the number 42, while the question itself is unknown,

so the key "question” gets associated with "?". Then number 2 is Yes, some of these associations are from
connected to its English name, the word "1list” is associated with a an old science-fiction book.
two-element list of numbers, then the empty list with a one-element

list. The order of the key-value pairs is not guaranteed.

"answer” | () 2 "question” | "list"
42 (3) | "two" " 12

So anything can be used as keys and values. Even nothing is per-
missible as a key: {nil "nothing”} is a permissible map. But there
is a type of keys, that is specially designed for hash-maps: keywords.
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They are symbols starting with a colon and they evaluate to them-
selves.
So, what was the book we mentioned?

(def book {:author "Douglas Adams”
:title "Hitch-hiker's guide to the galaxy”
:year 19793})

X . This is an all-time favorite science-
A hash-map behaves like a small database. Here we store informa- fiction novel with unusually big com-

tion about a book. You can look up values by giving keywords. puters playing central roles. [2]

(book :author)
"Douglas Adams"

A database as a function?!? Yes, hash-maps can be used as functions
with a key as the single argument. The result of the function call is
the corresponding value, or nil if it is not in the map. There are more
neat surprises.

(:author book)
"Douglas Adams”

Keywords also behave as functions! They look themselves up in a
hash-map.
There is a manual way to look up a data item.

(get book :title)

"Hitch-hiker's guide to the galaxy”

(get book :price)

nil
Why is this useful? We can give a default value in case the key is not
in the hash-map.

(get book :title "no information")
"Hitch-hiker's guide to the galaxy"
(get book :price "no information”)
"no information”

There is an elegant way to create a hash-map when we have the
keys and values in separate sequential collections, but matched up
nicely. We can just ‘zip’ them together.

n on

(zipmap (range 4) ["zero"” "one" "two" "three"])
{0 "zero", 1 "one", 2 "two", 3 "three"}

There is also easy access to the keys and values separately.
(keys {:x 1 :y 11 :z 111})

(:x :y :2)

(vals {:x 1 :y 11 :z 1113})

(111 111)



Huash-sets

Imagine a hash-map where keys are mapped to themselves. This
doesn’t make too much sense at first sight. If I have the element, why
would I want to look it up in a hash-map? If the key is there, I get
back the key, otherwise nil. These are truthy and falsey values, so
a hash-set behaves as a predicate for function for deciding member-
ship. Also, in a hash-map, keys cannot be duplicated (otherwise the
output value of the lookup function would be ambiguous). These two
give the behaviour of a set in the mathematical sense.

Hash-sets can be defined as data literals by curly braces prefixed
by a #.

(def numbers #{1 2 3})

As in mathematical sets, the order of the elements does not matter,
and it is not guaranteed to retain the order of the definition.

numbers
#{1 3 23}

As with hash-maps, we can use get to do lookup and to have the
possibility for a default answer in case the key is not in the hash-set

and don’t want to have nil as an answer, which is falsey. This is a bit weird, it’s like asking
"What's the weather like tomorrow? If
you don’t know, just say sunny.". But
often, handling nil would be quite a
2 hassle.

(get numbers 4)

(get numbers 2)

nil
(get numbers 4 :not-an-element)
:not-an-element

Hash-sets are also functions of their keys.
(numbers 4)
nil
(numbers 3)
3



In case more civilized logic values are needed, contains? is a predi-
cate function that decides whether a hash-set contains the given key

or not.

(contains? numbers 6)
false
(contains? numbers 1)
true

Thanks to truthiness, sets can be used as predicate functions in
filter.

(def fruits #{:apple :mango :pear :grape :banana :orange})
(def vegetables #{:cucumber :tomato :carrot :onion})

(def basket [:apple :apple :onion :carrot :grapel)

(filter vegetables basket)

(:onion :carrot)

(filter fruits basket)

(:apple :apple :grape)

For creating hash-sets, we can directly supply the elements to
hash-set,

(hash-set 321 2311)
#{1 3 2%}

(hash-set)

#{3

(hash-set "hello")
#{"hello"}

or we can turn a collection in a hash-set.

(set [13 17 17 19 23 19])
#{13 17 23 19}

(set (range 5))

#{0 1 4 3 2}

It is important to remember, that sets do not make any promise

about keeping the order. All they do is just answering whether a key

is contained or not. However, one can have sorted sets as well.

(sorted-set 13 17 17 19 23 19)
#{13 17 19 23}
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The sequence abstraction

All the collections so far, namely lists, vectors, strings, hash-maps,
hash-sets can be handled as sequences of elements. We can use the
seq function to investigate how the collections are turned into logical
sequences. Being a sequence is not a surprising property for lists and
vectors, since they are sequential data structures anyway.

(seq '(1 2 3 4))
(123 4)
(seq [1 2 3 4])
(1234

Strings are also sequences, whose elements are characters.

(seq "hello")
(\h \e \1 \1 \o)

For hash-sets, the elements can be enumerated one-by-one, but it
is important to note that there is no promise about the order of ele-
ments.

(seq #{:a :b :c})
(:c :b :a)

(seq #{1 2 3 5 8 13})
(113325 8)

How about hash-maps? They don’t really have single elements in
them, rather they contain pairs of elements. These key-value pairs
van be represented by vectors. Accordingly, the sequence of a hash-
map consists of key-value pairs in vectors.

(seq {:x 1, :s "foo", :c \x})
(C:x 1] [:s "foo"] [:c \x1)

So it seems that the right way to think about hash-maps that it is a
collection that contains associations, treated as single things.

(count {:a 11, :b 13})
2



This also shows that there is no need to call seq explicitly. CLo-
JURE takes care of turning the collections into sequences, whenever
needed. This way, all the sequence functions like first, rest, first,
second, last and the higher order sequence processing function like
map, filter, etc. can work with all the above data structures.

What is the point? The sequence abstraction can be justified in
different ways. From the students’ perspective it is a big win, since
one only needs to remember functions dealing with sequences, then
working with other data structures can be done without learning
anything new. The software engineer relishes the fact the same piece
of code would work in many different situations, enabling code reuse.

Where is the catch? The behaviour of the same function can be
different for different data structures. For example, the difference
between cons and conj can be confusing. cons builds a sequence,
always putting a new element in the front,

(cons 1 '(2 3))
(12 3)
(cons 1 [2 3])
(12 3)

while conj conjoins a new element in a way that is ‘natural’ for the
collection, (front for lists, back for vectors)

(conj '"(2 3) 1)
(12 3)
(conj [2 31 1)
[2 31]

and it can take arbitrary many arguments.

(conj [2 3] 4 5 6)
[2 3456]

Conjoining keeps the type of the collection.

(conj {:name "Arthur"} [:age 42])
{:name "Arthur", :age 42}

Beyond the different behaviours, performance can also be an issue.
One can use nth on lists, but it will not be as efficient as on vectors,
since CLOJURE has to hop through all the preceding elements.
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Here the unmissable quote is: “It is bet-
ter to have 100 functions operate on one
data structure than to have 10 functions
operate on 10 data structures.”, by Alan
J. Perlis in the foreword of SICP [1].



Immutability

Consider the following little conversation with the computer.

(def v [1 2 31)

Y
(conj v 4)
[1 23 4]

Now the question is what is the current value of v? What does v
evaluate to? If your answer is [1 2 3] (the correct one), then there is
nothing to worry about. We associated the vector [1 2 3] with the
symbol v, then we called the conj function with arguments v and 4,
which returned the conjoined vector [1 2 3 4] as a new value. The
association of v to [1 2 3 4] has not changed.

However, if you say v is [1 2 3 4], then you must have some pre-
vious programming experience in a language with mutable data
structures. Then, CLOJURE's immutable data structures can look a bit
strange in the beginning. You cannot change a collection, only create
a new one. Both approaches have advantages and disadvantages.
However, if we run programs concurrently or in parallel then im-
mutable data structures have a clear edge, since we don not need to
worry about someone else changing our most precious collection of
data.

So, what is the immutability exactly? Simple data items never
change. 42 is 42 forever. I can add one to it, (inc 42) equals 43.
Function create new values but do not touch their arguments. Nat-
urally, 42 will not mutate into 43 just by applying the function
f(x) = x4+ 1 to it. This is so obvious, that it feels a bit silly to men-
tion it.

For composite data items immutability is less obvious. It makes
perfect sense to add a new element to a vector, by changing it to a
bigger one. In CLOJURE a new vector is created and the old one is
retained. Do we need to worry about memory consumption? No, it’s
better than that. It is also efficient: there is structural sharing between
the old and the new vector. There is no unnecessary duplication of
the data items stored in vectors, hash-maps.

This is exactly how version control
systems work, e.g. GIT. They store
only the difference between different
versions of the documents.



Iteration

We often need to call a function iteratively, i.e. feeding the output
back into the function. Let’s consider a simple mathematical game.
Given a positive integer, if it is even then half it (still a whole num-
ber), when it’s odd multiply by 3 and add 1. What happens if you do
the same with the result? Again and again. The function itself is easy
to write.

(defn ¢ [n]
(if (even? n)
(/ n 2)
(inc (* 3 n))))

So we can try.

(c D
4
(c 4
2
(c 2)
1

From 1 we get back to 1. From 8 we would go to 4, then again get
back to 1. Is this the case for other numbers? Interesting problem
but tedious to call the function again and again. So, let’s automate! In
algebraic notation, we want the sequence

n,c(n),c(c(n)),clc(c(n))),...

we want to repeat the function c, calling it with the newly produced
value. The function iterate does that exactly:

(iterate f x)

produces the lazy list

C (fx) (f (f X)) (f (f (f x))) ... ),soin particular we can
use the above function ¢

(iterate c 1)

In mathematics this is called the Collatz
conjecture, and it is a particularly tough
problem. We do not know at the time
being whether for all numbers the
process eventually returns to 1 or not.
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But when you hit enter, no result. Seemingly. The computer evalu-
ates ¢ with argument 1, then takes the result as an argument of c,
infinitely many times (at least until the computer’s memory fills up).
That’s why it never returns a value. This is another example of deal-
ing with something potentially infinite. The functions take and drop
can tame infinite sequences of numbers, and they can do that to infi-
nite sequence of function calls. We simply ask to return the first few
values of the infinite sequence.

(take 20 (iterate c 9))
(9 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1)

We can also ask what is the sixth element of the sequence (indexed
by 5)?

(first (drop 5 (iterate c 9)))
11

The range function called without arguments produces the infinite
lazy list of natural numbers. Can we produce the same list without
range? Yes, (iterate inc 0).



Recursion

The simplest way of defining recursion is that a function calls itself.
This may look paradoxical, since we are defining something in terms
of itself, thus we have a circular definition. Schematically, a recursive
function definition looks like (defn f [x] ... (f ...) ...), where
the dots stand for some other code. The point is that f appears in

its own definition. How can we use a function we do not have yet?
The paradox disappears if we consider the function calling itself with
different arguments, that somehow represent a smaller and easier

to solve version of the problem. So, recursion is a way of dividing a
difficult problem into easier ones.

When a problem is somehow given as a list we can naturally di-
vide it into two parts: dealing with the first element, and dealing
with the rest of the list. Recursive functions on lists are the classical
examples of functional programming. Let’s imagine count, a func-
tion for getting the size of a collection, is not available, so here is an
implementation for lists.

(defn my-count
[1]
(if (empty? 1)
0
(inc (my-count (rest 1)))))

If the list is empty, then the function returns 0. This is the base case,
where the recursion stops. Otherwise, it knocks off the first element
of the list and calls itself for the rest of the list. This way it calculates
the size of the list by adding one to the size of the list without the
first element. It is instructive to think about what happens when
my-count is called.

(my-count [6 71)

(inc (my-count '(7)))

(inc (inc (my-count '())))
(inc (inc @))

(inc 1)

2

Self-reference is where things get
interesting. Consider the sentence “This
sentence is false.”; it does not have

a well-defined logical value. Beyond
logical paradoxes, self-reference is

often thought to be a key ingredient

to consciousness. See for example [5].
Also, the movie Inception, dream inside
a dream, is another illustrative example
of a recursive structure.
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It requires quite a cognitive effort to see the shape of this process as
one has to imagine the chain of these "hanging calls’.

Another classic is the re-implementation of map, again dividing the
work by first and rest.

(defn my-map
[f colll]
(if (empty? coll)
O
(cons (f (first coll))
(my-map f (rest coll)))))

The functions filter and remove can be implemented recursively in a
similar way.

Dividing the work is not limited to list operations. Here is a classic
(literally, from ancient Greece) algorithm for finding the greatest
common divisor of of two positive integers.

(defn gcd
[m n]
(if (zero? n)
m
(gcd n (mod m n))))

The difficulty of recursion comes from its all-or-nothing nature. The
useful strategy of crafting a piece of computation in the REPL, identi-
fying its moving parts, then turning it into a function definition, does
not work. The function has to be there already. The above examples
are all very simple. They in fact can be done in a non-recursive way
(e.g., by reducing). Here is a more involved recursion. How many
ways can we express a particular sum value with a given type of
coins (assuming infinite supply).

(defn coin-change [coins sum]
(cond
(zero? sum) 1
(or (neg? sum) (empty? coins)) 0
:else (+ (coin-change coins (- sum (first coins)))
(coin-change (rest coins) sum))))

For instance, (coin-change [1 3] 7) will return 3, since we can have
seven 1-coins, four 1-coins and a single 3-coin, or two 3-coins with a
single 1-coin.

Recursive solution are pretty, but not the most efficient way. Is the
recursive call the last thing we do? In that case we do not need all the
hanging calls. We can de non-recursion in a recursive style with loop
and recur.



Destructuring

Often there is a need for extracting information from a collection.
This is usually done by a systematic naming of elements in the collec-
tion. In other words, we are matching a pattern on a composite data
structure.

How often do we get some collection as an argument of a function
and then spend half of the body of the function to pull the collection
apart? Destructuring handles this. Just like kicking the ball on the
volley, we can give names to parts of the arguments before they land
in the function.

In order to show its usefulness, we will rewrite an example several
times to improve it. For example, we can represent a line defined by
a vector of two points. The points are also vectors of the coordinates,
a pair of two numbers. Imagine that we would like to compute the
slope of the line like (slope [[1 2] [2 411). Itis calculated by find-
ing the ratio of the change in the y-coordinate and the change in the
x-coordinate. Expressed algebraically,

L2
X1 — X2

so we define the function to compute this formula.

(defn slope
[line]
/
(- (second (second line)) (second (first line)))
(- (first (second line)) (first (first line)))))

Here the coordinate information is extracted on demand, making the
actual calculation obscure, littered with the retrieval. The formula is
not easily recognizable in the code. We can separate the technical bit
(extracting data from a collections) from the actual computation, by
doing symbol bindings for each data item we need in the formula.
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(defn slope2

[line]

(let [p1 (first line)
p2 (second line)
x1 (first p1)
y1 (second p1)
x2 (first p2)
y2 (second p2)]

(/ (= y1 y2) (- x1 x2))))

Now the computation is quite clear, it is basically the mathematical
formula. However, we have a long list of bindings. We paid for the
clarity by making the code longer. Moreover, writing the let state-
ment is a boring task, so we want to automate it. Destructuring does
exactly that automation of naming. We can simply give the ‘shape’ of
the input data in the argument list. We don’t just give a single name
for the argument, but several names put together in the required data
format.

(defn slope3
[ [[x1 y11 [x2 y217 ]
(/ (= y1 y2) (- x1 x2)))

slope3 still has a single argument, but its internal structure is speci-
fied, and the binding is done by matching the names with actual data
items in the input collection. This may look like magic first, but it is
actually just a simple automation. It is easy to reveal how it is done.

(destructure '[ [x yl [13 1911)
[vec__1246 [13 19]

x (clojure.core/nth vec__1246 9@ nil)
y (clojure.core/nth vec__1246 1 nil)]

It does exactly the work we did not want to do manually. destructure
produces a vector of bindings, that is given to let in a real destruc-
turing situation.

Destructuring works for all symbol bindings. It can be used in let
statements as well.

Pattern matching on a sequence is called sequential destructuring.
The general idea works for associative collections as well, so we also
have associative destructuring. The matched pattern will determine the
bindings.

(def m {:a 3 :b 5})

(let [{a :a, b :b} m]
[a b])

[3 5]

destructure is very useful in figuring
out what goes wrong in an unsuccessful
and complex destructuring attempt.



The destructuring reads as the symbol a will be bound to the value
of key :a in the hash-map m. Sequential and associative destructuring
can be mixed.

In short, destructuring allows us to name items in a collection by
their positions. In a sense it is a “visual” way of systematic symbol
binding.
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Point-free style

We can create new functions by specifying what they do with their
arguments, but we can also make new functions without mentioning
those input values (points). There are several ways to do this:

e composing functions by comp,
* preloading arguments by partial,
¢ grouping functions to work on same input by juxt,

* negating logical output value by complement.

Nested function calls of the form (f (g (h x))) can be replaced by
((comp f g h) x).

(def negative-product (comp - *))
(negative-product 2 3)
-6

With partial we can create functions by preloading the first few
arguments of a function with several inputs. In a sense we turn a
general function into a more specific one.

(def ten-times (partial * 10))
(map ten-times [1 2 31)
(10 20 30)

When we want to apply several functions to same input, we can
juxtapose them. (juxt f g h) is the function that produces [(f x)
(g x) (h x)] when applied to x. It works functions that can take
more arguments, but obviously they need to have the same number
of inputs,

((juxt take drop) 3 [1 2 3 45 6])
[(123) (45 6)]

and juxt always returns the result in a vector.
One thing where juxt really shines is retrieving data items from a
hash-map, more than one at the same time.



(def book {:author "Terry Pratchett”

:title "Hogfather”

:year 1996

:series "Discworld”})
((juxt :title :year) book)
["Hogfather” 1996]

Combining these higher-order functions can be very expressive.
Here is a one-liner function for segregating even and odd numbers.

(def sgr (juxt (partial filter even?) (partial filter odd?)))
(sgr (range 9))
[(0624638) (1 357)]

It’s amazing how far one can get with point-free style. Here we
define a function that counts the number of lowercase letters in a
string.

(def count-if (comp count filter))

(def letters (set "abcdefghijklmnopgrstuvwxyz"))
(def count-lowercase (partial count-if letters))
(count-lowercase "aBbC10x")

3

It is debated how desirable is the point-free style in practice. Some
say it is “pointless’, and readability can be a subjective issue.
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Of course, the standard solution for this
problem would use regular expressions.



Sophisticated sequence construction

Imagine that we need to produce a list of ordered pairs of elements
coming from two collections. It is easy to see that this might be done
with nested map calls.

(mapcat
(fn [v]l (map (partial conj v) coll2))
(map vector colll))

Easy? Readable? Even if map is your best friend, this piece of code
still requires a bit of time to read. It is a simple task, but the solution
already has three map calls. How about the direct product of three or
more sets? There has to be a better way.

This type of construction is an example of a general operation,
called list comprehension, and it is also automated.

(for [x [1 2 3]
y [:a :bl]
(list x y))
(1 :a) (1 :b) (2 :a) (2 :b) (3 :a) (3 :b))

The construction is somewhat similar to let bindings, but the sym-
bols are not bound to the collections, but rather to their elements one
by one systematically. Then we give an expression containing these
symbols, which defines an element added to the resulting sequence.

The order of the bindings does matter. Compare this with the
above code block.

(for [y [:a :b]
x [1 2 3]1]
[x y1)
([T :al [2 :a] [3 :al [1 :b] [2 :b] [3 :bl1)

The first binding is the slowest to change.

It is possible to restrict the elements in the result, much like the
functionality of filter and take-while. We can produce pairs of
numbers that are in strictly increasing order. With :when we can
specify a predicate, here the less-than relation, and we collect only
those items that satisfy the predicate.

Mathematicians call this the direct
product, or Cartesian product.
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(for [x (range 4)
y (range 4)
:when (< x y)]
[x yI)
(e 11 [e 2] [e 31 [1 2] [1 31 [2 3])

The :while modifier behaves like take-while. It adds elements to
the final sequence as long as the predicate is satisfied, and then stops
the binding process. Using the :while modifier is more tricky as it That is ‘breaking the loop’.
depends on the order of the enumeration and it is also sensitive to
the location.

(for [x (range 3) :while (not= x 1)
y (range 3)]
[x yD)
([0 o] [0 1] [@ 21)

Here we check the condition before going through the y bindings.

(for [x (range 3)
y (range 3) :while (not= x 1)]
[x yD
([0 o] [0 1] [0 2] [2 @] [2 1] [2 2])

Here we descend into enumerating the second level, then check the
condition.

The :1let modifier allows us to make symbol bindings in addition
to the enumerated ones.

(for [x (range 3)
y (range 3)
:let [xy (* x y)1]
(str x "*" y "=" xy))
("0*0=0" "0*x1=0" "0x2=0" "1%0=0" "1x1=1" "1x2=2" "2x0=0"
"2x1=2" "2x2=4")

List comprehension is like a mini-language inside CLOJURE with

the special purpose of constructing sequences. The industry term is DSL, domain-
specific language.



Changing the world — Side-effects

The functions we have seen so far were pure functions: the output de-
pends only on the inputs. In order to understand what the function
does, we don’t need to check anything else. The history of previous
function calls have no effect on the current call. This makes things
very easy. Of course, the world is not like this. If you ask me now
and tomorrow ‘How are you?’, you are not guaranteed to have the
same answer. Similarly, we have ‘functions’ that are not pure.

(rand)
0.7811104824887901
(rand)
0.3589579594682847
(rand)
0.629147957095869

These are random numbers between o and 1. The function takes Rather, they are pseudo-random num-
no arguments but it doesn’t return the same value for each call. bers generated by an algorithm.
Something must be changing in the background. The function has
a side-effect.

There are cases where are only interested in the side-effect, not in

the returned value. Playing sounds, displaying graphics,
motion picture, saving files, and so on.

(println "Hello world!")
Hello world!
nil

The return value is nil, the side-effect is the text appearing on the
screen. We could postpone thinking about side-effects since the REPL
automatically prints return values of functions.

Calling a function with side-effect may not be a one off case. Sim-
ilar to list comprehension with for, we can execute repeated tasks
using doseq.



(doseq [a [1 2]

b [:x :yl]
(println a b))
X

N N — —

y
1X
y

nil
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Etudes

One can learn the rules of chess or Go immediately. However, mas-
tering them takes long time, playing many games. Same for program-
ming. Learning the basic constructs of a programming language is

a quick process. Understanding what reduce does is not that hard,
but knowing when to use it and how to adapt the general mecha-
nism to a particular problem require lot of practice. Like performing
musicians, we need to go through exercises several times.

What is 42?

The task is simple. Write some code that somehow produces 42. The
easiest way is to use a data literal 42. How about other ways? When
you are not allowed to write down the number itself. By arithmetic
operations,

(x 67)
(+ 40 2)

or by incrementing/decrementing,

(inc 41)
(dec 43)

or by counting a number of elements in a collection,
(count "@12345678901234567890123456789012345678901")
the ASCII code of * is also 42,

(int \*)

n!

Writing a function to calculate n! (n factorial) is a common program-
ming exercise for recursion. It is defined as the product of natural
numbers from 1 up to n, with the special case of 0! = 1. Recursively,



(defn factorial [n]
(if (zero? n)
1
(x n (f (dec n)))))

but if someone is worried about the inefficiency of the recursive call
then tail recursion is also possible.

(defn factorial
([n1 (f n 1))
([n r]l (if (zero? n)
r
(recur (dec n) (* n r)))))

The current value to be multiplied with is also passed on through the
call, so the caller don’t have to wait. However, there is no real need to
be recursive, thus checking for the base case is not necessary.

(defn factorial [n]
(reduce * (range 1 (inc n))))
Transposing a matrix
Considering matrix
1 2
A=|3 4,
5 6

we would like to calculate its transpose (swapping rows with columns)

1 3 5
2 4 6|

Matrices can be represented as nested vectors.

AT =

(def A [[1 2] [3 4] [5 611)

Without further ado, here is how to do the transpose.

(apply map vector A)
([1 3 5] [2 4 6])

If the result needs to be a vector as well, then mapv can replace map.
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Functional Programming

What is functional programming? The computer is doing useful work
by evaluating functions. When given a function and some input argu-
ments it calculates the value of the function. If we have a problem to
solve or a question to be answered, we need to bring into this form:
function and input values.

Where do we get the inputs? That is the raw data we have in the
beginning. Bits and pieces of information which we want to process
to get some meaningful results. Certain data items that represent our
question.

Where do we get the functions to call? There are four ways to get
those.

1. The built-in functions are already there. The programming lan-
guage comes with numerous general purpose functions. We can
just start using them.

2. Some data structures behave like functions. Vectors are functions
from the set of valid indices to the corresponding content. Hash-
maps are functions from keys to values. Hash-sets are functions
from elements to truthy values.

3. Higher order functions can create new functions. Some functions
produce functions as their output values. Function composition is
the prime example, but all point-free style functions belong to this
category.

4. Writing new functions from scratch. We can define functions
directly by specifying its arguments and its body, which is a bunch
of function calls. Thus we still combine existing functions, but in a
more manual way.

Calling only built-in functions, we can use the language as a calcula-
tor, and we are users. In case the desired functionality is not available,
we need take the role of the programmer, and create new functions.

Functions can be found not just in

the core language, but in external
libraries. These are collections of useful
functions, usually for solving some
particular type of problems. In the 21st
century, software development is more
about finding the right library, than
programming.
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