How To Cobe IT?

Attila Egri-Nagy

V2024.11.26

Here is an adaptation of the classic problem solving method' to computer programming. It applies to coding
exercise problems in (functional) programming languages with a REPL (read-eval-print-loop). Problem solving
is a messy business. Asking these questions may help to navigate through the process.

UNDERSTANDING THE
PROBLEM

There is no point in writing
code without knowing what
we want to achieve.

Interact with the data!

MAKING A PLAN
Decomposing the problem
into smaller and simpler tasks.

CARRYING OUT THE PLAN
Write little code and then use it,
and write a bit more and use
that too. Write code, test code,
write, test, write, test...

LoOKING BACK
Check, reflect and learn.
Rewrite for improvement.

What is the input? What is the output? What are the types of these data items?
What is the connection between input and output?

Think about a few examples of input-output pairs. Use pen and paper. Draw
if necessary. Introduce suitable notation. Names and symbols can be used
in the code later.

If you are a beginner, play in the REPL! First, just play freely! Explore the
data types of the input and output and use some functions that work with
them! Do not worry about the evaluated code pieces being connected to the
problem. This is for refreshing memory. Though, for simple problems, an
existing function might even turn out to be a solution.

Trying to solve a problem in one go is a sign of lacking a plan. Making a plan
is identifying the steps needed, i.e. decomposing the problems into simpler
ones. How is data represented? What are the steps of data transformations?
Can we combine existing functions to do work? Can we specialize a function to
[t the task? Do we process collections? How to process an element? If needed,
by wishful thinking, come up with imaginary functions that would make
solving the problems easier. If we had a function that computes x, and
another that computes y, would it be easier to solve the problem? Work on
those functions as separate problems, then return to the original problem.

Test each step, each function if possible. Make the write-code-test-code cycle
as short as possible. Do not do deep nested calls without checking each
function. Mistake in the first step may appear later, disguised as a totally
different problem. Did we get the first step right? The second? ... What are
the test cases? Can we reason about the correctness of the code? When confused,
go back to function definitions, examine their source code. Do we use this
line of the code? Throw away code that does not work. Do clean restarts!
Leftover code from dead end attempts and different half solutions interfere
and turn the original problem into a harder one. What does this piece of code
do? Read your code as if written by someone else!

Does the program do more than what is needed? Is there a way to simplify this
solution? Is there a different solution? Can we use the function or its method to
solve other problems? Learning starts when the problem is solved. Refactor
(rewrite) for simplicity, efficiency or wider applicability.

"How to Solve It — A New Aspect of Mathematical Method by George Pélya, Princeton University Press, 194s.



Trying to solve a programming problem can be a daunting experience. Not knowing
how to start, or not understanding why the code is ‘misbehaving’, having no clue about
the next step — these are intimidating and frustrating. On the other hand, programming
is not magic, anyone with a bit of patience can learn it. The reward is great, the joy of
seeing the right output for the first time on the screen is immense. Here are a few pieces
of advice, that may (or may not) help in overcoming difficulties.

Practice

It is not a big secret. If we keep doing something, we get better at it. Problem solving
and coding are not exceptions.

What is less known is that solving a problem only once is often not enough. Performing
musicians do not stop practising after they could play the whole piece without mistakes
for the first time. They play it again and again, to reinforce the memory and to improve
the playing style. Same for programming. You solve a problem, for the first time,
probably with the help of someone, the Internet, or some Al It is not learning yet, it is
only an opportunity for that. After the first solution, you should clear the screen and
solve the problem again — this time alone. And again. Repeat this a few times, then you
will see a better way to do it. Go and explain your solution to someone else. Eventually,
you get bored with the problem, and that is a good sign. You can move to a harder

problem.

Where do ideas come from?

From previous experience.

There is the myth of pure genius creating great new ideas out of nothing. Even if this
is a real skill, most of us don’t have it. Luckily, superhuman abilities are not needed
for programming. The number of previously solved problems is a reliable measure for
proficiency in coding. As this number grows, one will observe cases where knowledge
gained previously can be reused.

Have we solved a related or similar problem before? Can we use result of the solution? or
its method?

By result we mean the output of a function written for a previous problem. That
function may be usable for the current one as well. Especially, if it was rewritten for
generality in the looking back phase of problem solving.



By method we mean an idea used to solve a previous solution, or even pieces of source
code. Same type of algorithm might be applicable with no or little modification. The
solution might have a generic form like recursion or folding.

Reflection

It is always a good idea to be conscious about the steps we make. This is not to state
the obvious that we can’t write programs while sleeping. Rather, asking questions like
What did I do? Why did I do that? Is this taking me closer to the goal? When progress
has been made, Is there a better way? Can this function be used for something else?

We tend do this naturally, but not to a large extent. It pays oft to ask these questions

explicitly. Maybe having a checklist of these questions handy when coding is a useful
habit.

Reading source code — explanations and imagination

When a piece of code does not work, the first step in fixing is to find an explanation of
why it’s not working. When the code does work, we still need to have an explanation why
it does so. Both require reading the code back. Reading here means imagining what the
machine would do when executing the program. This is imagining the computational
process created by the source code. The technical name is t7acing.

A usual mistake is to have a false explanation about some parts of the program. We think
we know exactly what process it creates, but we are wrong. Being convinced, we do not
read that part of the code. Instead, we waste a lot of time trying to find the source of
error somewhere else. Therefore, it is very important to re-read, re-trace source code, as
if it was completely new for us, as if written by someone else.

Check the obvious, maintain a beginner mindset!

Know your limitations!

Tracing, the process of ‘mental computing’ has advantages and limitations. We can do
part of the computation instantly, just by imagining a resulting value. But when we
actually trace the computation, our thinking is relatively slow and there is a limit of how
many things we can think of at the same time. The limitations can be alleviated by using
the REPL: we can check function calls separately, fabricating input values whenever



needed. Therefore, understanding source code is easier through experimentation in the
REPL compared to mere reading.

Pen & Paper

Writing on paper is not to be dismissed as an old technology. One of the most accessible
form of external information representation. No need to switch between windows or
scroll the page on screen. It helps to reduce the number of things we need to keep in
our head at the same time.

Philosophically, it is just another type of computer. A computer can be defined as a
device that stores, retrieves and transforms information. A sheet of paper can do all
three. Storage: we can write on it. Retrieval: we can look at it. Transformation: well,
that is an edge case, the identity function.

Variations

When the code doesn’t work, we go through it step-by-step. Again and again. If the
problem persists, it pays off to change something in the revision method. Maybe altering
the order of the steps, or changing the input. Making variations increases the chance of
finding the mistake.

It’s OK to be confused.

Really. Abstract thinking is a defining characteristic of human beings, but in program-
ming we take this ability to extremes, so it does not come that easily.

Professional programmers also have the feeling of being lost frequently. For example,
even if someone is a master of a language, still, there is a need to work with someone
else’s code, and exploring the unknown is not a straight process. Being professional
means that you know how to recover quickly by going back to the point where you got
lost.

Play in the REPL!

This is an oft-repeated advice, but what does it mean exactly? Playing with what?

Playing in a sense of just trying things out, just reminding ourselves how data structures
behave under certain functions. This may sound a bit weird, since this advice explicitly



tells not to work on the problem, giving it up for some time.

What are the data structures mentioned in the problem? Characters and strings? Then
let’s just turn a bunch of characters into strings, or blow up a string into a sequence of
characters.

The first goal is the mobilisation of existing knowledge, refreshing memory. Then, still
in the REPL, we can start combining known functions, possibly getting closer to the
required data transformation. If some useful combination comes up, after trying it
with several inputs, we can just copy paste it to an editor. It becomes the body of a new
function. We just need to abstract the example by changing its ‘moving parts’ to formal
parameters.

After solving many problems, the playing phase gets shorter. Atsome point the direction
of the data flow between the REPL and the editor turns around: sending code written
in the editor to the REPL for testing purposes.

“Irial and error’ to be avoided

Playing in the REPL should not degrade to the trial and error method. Making random
changes and hoping for the desired outcome do not involve informal reasoning, thus we
will not gain understanding even when we succeed. Being desperate, we can try some
arbitrary function calls, to see what happens. However, when looking at the result,
it is not enough to ask ’Is this a good result?’. We should investigate why we get this
particular result. We need to get an explanation.

Learn to throw away code

For small problems, it is a good idea to restart problem solving a couple of times. We
are bound to make mistakes, and it is often difficult to understand what goes wrong.
Debugging takes a long time. After erasing everything, we might have a good chance of
not making the same error again.

If you keep code that is not really working, then it becomes part of the problem to be
solved. They interfere with other parts of the code, they limit how things can be done.
In software engineering, the practise of throwing code away is very much needed too.
Unfortunately, it is often impossible. This happens for instance when some not so good
code is in use already. This the problem of Jegacy code. You may need to make a lot of
effort to code around a previous mistake, trying to neutralize it. The original problem
is replaced with a more difficult one.



Wishful thinking

Problems seldom can be solved in one go. Don’t expect to be able to do that. No one
can. The trick is to be able to break down the problem into smaller and easier ones. The
most natural method is to make wishes.

I have to go through a collection and find elements with a certain property.
I wish I had a predicate function that can decide whether an element has
that property or not.

There you go! Now you have a simpler problem, just write a predicate function.

Make it easy for yourself

Or rather, do not make it harder than it is necessary. It might be argued, that the real
difference between a professional and the beginner is the ability to avoid complications,
and not the ability of dealing with messy situations.

When you need to write a function, starting with the actual function definition is
rarely a good idea. Unless you know exactly what it should do. If not, then some
experimentation is needed. Putting experimental code into the body of the function
makes it less accessible. We can only interact with it by calling the function, and we only
get its return value. Therefore, a lot of thinking, logical inference need to be done to
figure out what goes wrong inside when we don’t get the desired value. This is another
reason for playing in the REPL!

Know when to stop

When doing problem seems too difficult even after a long period of time, it is often
a good idea to take some rest or do something else. This is especially important if we
consider that programming is not the best activity for the human body.

Switching to another activity may actually be the shortest path to the solution. If
interested enough, the brain doesn’t stop working, it continues subconsciously. So,
when you revisit the problem, you may just simply see the solution.



Do only what is needed, make the computer do the
work

Modern programming languages automate many things. For example, functional
languages with map, filter, reduce take care of dealing with collections. Therefore,
in functional collection processing, you only need to create functions that deal with a
single element of the collection. The rest is automated.

In general, whenever you feel that you need to do something mechanistic, many things
to keep track of, there is possibly a way to automate that activity. Moreover, there is a
good chance that it is already available in the language.

The real difficulty

The real difficulty does not lie in the programming task itself. After all, the problems
we want to solve computationally are well-defined. In life, problems are ill-defined,
and often we need to figure out first what we want to do. The difhiculty is more about
how we manage ourselves during the problem-solving process. It is an emotional,
psychological problem. Thoughts like “This is too difficult for me.’, ‘I just don’t know
enough.’, ‘Everyone else finished the exercise. Why am I stuck?’ have nothing to do
with programming. These questions are about social anxieties, not the relationship
between the input and output data. They come uninvited, take away attention, and do
not move us closer to a solution. If we can get back to the questions about the problem
instead, we will have, sooner or later, the thrilling joy of success.

Programming can be pretty extreme in this cycle of going from doubt and despair to
delight and satisfaction, and back again.

www.egri-nagy.hu



